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ABSTRACT 

Purpose: To assess the performance of full dose (FD) positron emission tomography (PET) image synthesis 

in both image and projection space from low-dose (LD) PET images/sinograms without sacrificing 

diagnostic quality using deep learning techniques. 

Methods: Clinical brain PET/CT studies of 140 patients were retrospectively employed for LD to FD PET 

conversion. 5% of the events were randomly selected from the FD list-mode PET data to simulate a realistic 

LD acquisition. A modified 3D U-Net model was implemented to predict FD sinograms in the projection-

space (PSS) and FD images in image-space (PIS) from their corresponding LD sinograms/images, 

respectively. The quality of the predicted PET images was assessed by two nuclear medicine specialists 

using a five-point grading scheme. Quantitative analysis using established metrics including the peak signal-

to-noise ratio (PSNR), structural similarity index metric (SSIM), region-wise standardized uptake value 

(SUV) bias, as well as first-, second- and high-order texture radiomic features in 83 brain regions for the 

test and evaluation dataset was also performed. 

Results: All PSS images were scored 4 or higher (good to excellent) by the nuclear medicine specialists. 

PSNR and SSIM values of 0.96 ± 0.03, 0.97 ± 0.02 and 31.70 ± 0.75, 37.30 ± 0.71 were obtained for PIS 

and PSS, respectively. The average SUV bias calculated over all brain regions was 0.24 ± 0.96% and 1.05 

± 1.44% for PSS and PIS, respectively. The Bland-Altman plots reported the lowest SUV bias (0.02) and 

variance (95% CI: -0.92, +0.84) for PSS compared with the reference FD images. The relative error of the 

homogeneity radiomic feature belonging to the Grey Level Co-occurrence Matrix category was -1.07 ± 1.77 

and 0.28 ± 1.4 for PIS and PSS, respectively 

Conclusion: The qualitative assessment and quantitative analysis demonstrated that the FD PET prediction 

in projection space led to superior performance, resulting in higher image quality and lower SUV bias and 

variance compared to FD PET prediction in the image domain. 

 

Keywords: PET/CT, brain imaging, low-dose imaging, deep learning, radiomics.
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INTRODUCTION 

Molecular neuroimaging using is PET is ideally suited for monitoring cell/molecular events early in the 

course of a neurodegenerative disease as well as during pharmacologic therapy (1). PET is a molecular 

imaging technique that produces a three-dimensional (3D) radiotracer distribution map representing 

properties of biological tissues, such as metabolic activity or receptor availability. PET images suffer from 

relatively high noise level dictated by the Poisson nature of annihilation photons emission and detection. 

Apart from the technical aspects, PET image quality depends on the amount of injected radiotracer and/or 

acquisition time which are proportional to the statistics of the detected events. The main argument in favour 

of a reduction of the injected radiotracer’s activity is linked to the potential risks of ionizing radiation (2). 

Albeit low, this risk increase motivates precaution, particularly in paediatric patients, healthy volunteers or 

in case of multiple scanning for follow-up or monitoring the response to treatment using different tracers. 

Therefore, there has always been a desire to moderate the injected activity to minimize the potential health 

hazards. A reduced acquisition time could have a positive impact on patient’s comfort and on scanner’s 

throughput. However, dose/time reduction can adversely impact image quality, inevitably leading to lower 

signal-to-noise ratio (SNR), thus hampering the quantitative and diagnostic value of PET imaging. 

To address this issue, a number of approaches have been proposed in the literature to produce 

standard/full-dose (FD) PET images from corresponding low-dose/count (LD) images (3). Formerly, 

iterative reconstruction algorithms with accurate statistical modelling (4) and post-processing/filtering (5,6) 

were the two common methods. However, these approaches tend to reduce spatial resolution, quantitative 

accuracy by producing over-smooth structures (7,8). In the past years, deep learning algorithms have 

witnessed notable growth in the fields of computer vision and medical image analysis (9,10). Contrary to 

other denoising approaches which are applied directly on LD PET images, deep learning algorithms are 

capable of learning a non-linear transformation to predict standard-dose images from low-dose inputs. In 

particular, convolutional neural network (CNN) models have demonstrated outstanding performance in 

cross-modality image synthesis, such as MRI to CT conversion (11,12), joint PET attenuation and scatter 

correction in image-space (13,14) as well as synthesis of FD PET images from LD images (15-21). Xiang 

et al. suggested a deep auto-context CNN architecture that estimates FD PET images based on local patches 

in LD PET images (19). A major limitation of this work is that 2D transaxial slices were extracted from 

PET images and used for 2D training of the CNN model. Another group claimed that reliable FD PET could 

be estimated from a 200th LD images using a residual U-Net architecture (22). Other work from the same 

group utilized 2D slices of LD 18F-Florbetaben PET images along with various MR sequences, such as T1, 

T2 and DWI, to predict FD images using a U-Net architecture (15). Häggström et al. (23) developed a deep 

encoder-decoder network for direct reconstruction of PET images from sinograms whereas Hong et al. (24) 
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proposed a data-driven, single-image super-resolution technique for sinograms using a deep residual CNN 

to improve PET’s spatial resolution and noise properties. 

A more recent work reported on the use of a 3D-Unet along with anatomical information from co-

registered MRI to improve PET’s SNR without using higher SNR PET images in the training dataset (25). 

Cui et al. (26) presented an unsupervised model for PET denoising where the model was fed by the patient’s 

prior high quality images and the noisy PET image itself was used as the training label. As such, this 

approach does not need any paired dataset for training. Furthermore, Lu et al. (27) investigated the effect of 

different network architectures and other parameters pertaining to both noise reduction and quantitative 

performance. The optimized fully 3D U-Net architecture is capable of reducing the noise in LD PET images 

while minimizing the quantification bias for lung nodules characterization. 

Previous studies relied on deep learning-based approaches to establish an end-to-end pipeline to 

synthesize FD PET in image-space (15-21). As such, these approaches are optimized for a specific protocol, 

such as image reconstruction algorithm or post-reconstruction filter. Therefore, adoption to a different 

reconstruction technique requires retraining the CNN. Conversely, the prediction of FD PET images in the 

projection-space allows the selection of any reconstruction and/or post-reconstruction filter without the need 

for retraining the CNN. Furthermore, projection-space provides more comprehensive data representation 

than image-space, effectively containing detailed information about count statistics and spatial and temporal 

distributions. To take advantage of this fact, a 3D-Unet was trained to predict a FD sinograms from LD 

sinograms in an end-to-end fashion. Thereafter, the synthesized sinogram can be reconstructed using any 

reconstruction algorithm. The results achieved using the proposed framework are compared to the image 

domain implementation using the same 3D-Unet architecture. Low-dose PET imaging using the proposed 

approach would be beneficial in pediatric and adolescent clinical studies as well as in research protocols 

requiring serial studies. 

 

MATERIALS AND METHODS 

PET/CT Data Acquisition 

The present study was conducted on 18F-FDG brain PET/CT studies collected between June 2017 and May 

2019 at Geneva university Hospital. The database consisted of 140 patients presenting with cognitive 

symptoms of possible neurodegenerative disease (73 ± 8 yrs), 66 males and 74 females (73 ± 9 yrs and 72 

± 11 yrs, respectively). Detailed demographic information of the patients is summarized in Table 1. The 

study protocol was approved by the institution’s ethics committee and all patients gave written informed 

content. The PET/CT acquisitions were performed on a Biograph mCT scanner (Siemens Healthcare, 

Erlangen, Germany) about 35 minutes post-injection. A low-dose CT scan (120 kVp, 20 mAs) was 

performed for PET attenuation correction. The patients underwent a 20-min brain PET/CT scan after 
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injection of 205 ± 10 MBq of 18F-FDG. PET data were acquired in list-mode format and reconstructed using 

e7 tool (an offline reconstruction toolkit provided by Siemens Healthcare) to produce FD PET 

sinograms/images. Subsequently, a subset of PET data containing 5% of the total events was extracted 

randomly from the list-mode data to produce LD sinograms (400×168×621 matrix) using a validated code 

(28). Both FD and LD PET images were reconstructed into a 200×200×109 image matrix (2.03×2.03×2.2 

mm3 voxel size) using an ordinary Poisson ordered subsets-expectation maximization (OP-OSEM) 

algorithm (5 iterations, 21 subsets). PET images underwent post-reconstruction Gaussian filtering with 2 

mm FWHM similar to the clinical protocol. 

U-Net Architecture 

A modified 3D U-Net based on the model proposed in (29) was developed to predict FD images/sinograms 

(PIS/PSS) from their corresponding LD images/sinograms. Figure 1 shows the structure of the modified 3D 

U-Net, which consists of an encoder-decoder module. In the encoder part, each layer contains two 3D 

convolutions (30) followed by a rectified linear unit (ReLu) activation function and a 3D maxpooling with 

stride size of 2. In the decoder part, each layer consists of 3D up-sampling with stride of 2 followed by two 

3D convolutions and a ReLu. The size of all convolutional kernels is 3×3 ×3 voxels in each convolutional 

layer. The shortcut connections between the outputs of each layer in the encoder network and the 

corresponding layer in the decoder network aimed at addressing the gradient vanishing problem that occurs 

in complex deep learning models. In CNN, the bottleneck is a layer which contains less neurons compared 

to its neighboring layers (31). To avoid this issue, the number of channels was doubled before maxpooling 

and before each ReLu function. The networks input are either a 101 × 101 × 71 matrix (after cropping) in 

the image domain or 400×168×62 matrix in the projection (sinogram) domain. 

The modified 3D U-net architecture also includes a series of pooling options, dilated convolutional layers 

and 16 convolutional layers. The Adam optimizer with a learning rate of 0.001 was used to minimize the 

loss function. A dataset of paired LD and FD images/sinograms of 100 subjects were used to train the 

network using the adaptive moment estimation implemented in Keras open-source package (32,33), which 

computes adaptive learning rates for each parameter and saves an exponentially decaying average of past 

gradients using Eqs. 1 and 2: 

𝐿௧ ൌ 𝑟ଵ𝐿௧ିଵ  ሺ1 െ 𝑟ଵሻ𝑔௧                                                          ሺ1ሻ 

𝑉௧ ൌ 𝑟ଶ𝑉௧ିଵ  ሺ1 െ 𝑟ଶሻ𝑔௧
ଶ                                                         ሺ2ሻ 

where 𝐿௧  and 𝑉௧  indicate the estimation of the mean and the uncentered variance of the gradients, 

respectively. 𝑔௧  denotes the gradient at subsequent time step 𝑡 and 𝑟ଵ and 𝑟ଶ are exponential decay rates 

with 𝑟ଵ, 𝑟ଶ ∈ [0, 1).  
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The model was implemented on NVIDIA 2080Ti GPU with 8 GB memory running under windows 10 

operating system. The training was performed using mini-batch size of 5 for 250 epochs. 

Data Augmentation. To increase the size of the training dataset while avoiding overfitting, three types of 

data augmentation methods were implemented. This included rotations, transformations, and zooming, 

which were randomly applied to the training data set. Hence, the model was trained using the 300 augmented 

along with the 100 original images. Applying such a rigid deformation to the training dataset assisted the 

network to learn features that are invariant to these transformations (34) . 

Training, Validation and Testing. The training and  hyper parameter fine-tuning of the model were 

performed on 100 patients. Twenty patients were used for model evaluation whereas a separate unseen 

dataset of 20 patients served as test dataset. The mean squared error (MSE) loss function was used for the 

training of the model. 

 

Evaluation Strategy 

Clinical Qualitative Assessment. The predicted PSS and PIS FD PET images along with their corresponding 

reference FD and LD PET images were anonymized and randomly enumerated for qualitative evaluation 

by two nuclear medicine physicians. In total, 80 PET images were evaluated, including 20 reference FD, 20 

LD, 20 PIS and 20 PSS PET images belonging to the test data set. The quality of PET images was assessed 

using a five-point grading scheme, namely 1: uninterpretable, 2: poor, 3: adequate, 4: good and 5: excellent 

(see Supplemental Figure 1). 

 

Quantitative Analysis. The accuracy of the predicted FD images from LD PET data were evaluated using 

three quantitative metrics, including the root mean squared error (RMSE), peak signal-to-noise ratio 

(PSNR), and structural similarity index metrics (SSIM) (Eqs. 3-5, respectively). Moreover, these metrics 

were also calculated for the LD images to provide an insight about the noise levels and significant signal in 

the LD images. 

𝑅𝑀𝑆𝐸ሺ𝑋,𝑌ሻ ൌ  ඨ
∑ ሺ𝑋 െ 𝑌ሻଶ
ୀଵ

𝐿
                                                                 ሺ3ሻ 

𝑃𝑆𝑁𝑅ሺ𝑋,𝑌ሻ ൌ 20 ൈ 𝑙𝑜𝑔ଵ

ሺ
ெ௫ሺሻ

ඥெௌாሺ,ሻ
ሻ

                                                              ሺ4ሻ 

𝑆𝑆𝐼𝑀ሺ𝑋,𝑌ሻ ൌ
൫ଶೣାభ൯ሺଶఙೣାమሻ

ሺೣ
మା

మାభሻሺఙೣ
మାఙ

మାమሻ
                                                          ሺ5ሻ  
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In Eq. (3), 𝐿 is the total number of voxels in the head region, 𝑋 is the reference image (FD), and 𝑌 is the 

predicted FD image. In Eq. (4) 𝑀𝑎𝑥ሺ𝑌ሻ indicates the maximum intensity value of 𝑋 or 𝑌, whereas MSE is 

the mean squared error. 𝑚௫ and 𝑚௬ in Eq. (5) denote the mean value of the images 𝑋 and 𝑌, respectively. 

𝜎௫௬  indicates the covariance of 𝜎௫  and  𝜎௬ , which in turn represent the variances of 𝑋  and 𝑌  images, 

respectively. The constant parameters 𝑐ଵ and 𝑐ଶ (𝑐ଵ ൌ 0.01 𝑎𝑛𝑑 𝑐ଶ ൌ 0.02ሻ were used to avoid a division 

by very small numbers. 

Region-based analysis was also performed to assess the agreement of the tracer uptake and 28 radiomic 

features between predicted and ground-truth images. Using the PMOD medical image analysis software 

(PMOD Technologies LLC, Switzerland) and the Hammers N30R83 brain atlas, 83 brain regions were 

delineated on the ground-truth FD PET images. Then the delineated volumes regions were mapped to LD, 

PIS and PSS PET images to quantify 28 radiometric features using the LIFEx analysis tool (35). Moreover, 

the region-wise standardized uptake value (SUV) bias and standard deviation (STD) were calculated for the 

83 brain regions on the predicted as well as LD PET images with the FD PET images serving as reference. 

A joint histogram analysis was also carried out to depict the voxel-wise correlation of the activity 

concentration between PIS and PSS and reference FD PET images. 

Overall, 28 radiomic features were extracted for each brain regions including seven conventional indices, 

five first-order features, seven Grey-Level Zone Length Matrix (GLZLM), six Grey-Level Run Length 

Matrix (GLRLM) and three Grey Level Co-occurrence Matrix (GLCM) features. The list of these radiomic 

features is shown in Table 2. The relative error (RE%) was also calculated for the radiomic features using 

Eq. 6. 

𝑅𝐸 ൌ
ሺூௌ,ௌௌሻିி

ி
ൈ 100%                                                         ሺ6ሻ  

In Eq. (6) , 𝑓 denotes the value of a specific radiomic feature calculated in a brain region. The MedCalc 

software (36) was employed for the calculation of the pairwise t-test for statistical analysis of RMSE, SSIM 

and PSNR between LD, PSS, PIS and reference FD PET images. The significance level was set at p-value 

< 0.05 for all comparisons. 

 

RESULTS 

The predicted images in both image and projection space exhibited notable enhancement in image quality 

compared to LD images, providing almost similar appearance with respect to reference FD PET images. 

Figure 2 displays representative transverse, coronal and sagittal views showing reference FD, LD, PIS and 

PSS PET images along with their corresponding bias maps. The visual inspection revealed that the images 

derived from training in the sinogram space better reflected the underlying FDG uptake patterns and 

anatomy than those obtained from implementation in image space. The image quality scores assigned by 
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the two physicians to FD, LD, PIS, PSS images are shown in Figure 3. The mean scores for each group are 

indicated at the top of each bar. The PIS images were scored as poor (score = 2) or better. The FD and PSS 

images exhibited comparable quality with score of 4.9 and 4.55 (good) or higher, respectively. 

Table 3 summarizes the PSNR, SSIM and RMSE calculated separately on the validation and test dataset 

for PIS, PSS and LD PET images. Overall, the predicted images in the projection-space showed improved 

image quality and better noise properties and higher quantitative accuracy (Table 4) with statistically 

significant differences with respect to the implementation in image-space.  

Figure 4 illustrates linear regression plots depicting the correlation between tracer uptake for LD, PIS 

and PSS with respect to FD. The scatter and linear regression plots showed higher correlation between PSS 

and FD (R2 = 0.99, RMSE = 0.28) compared to PIS (R2 = 0.98, RMSE = 0.33). A relatively higher RMSE 

(0.42) was obtained for LD PET images. 

The Bland-Altman plots, where each data point reflects a brain region, confirmed the results obtained 

from joint histogram analysis where the lowest SUV bias (0.02) and smallest SUV variance (95% CI: -0.92, 

+0.84) were observed for PSS images (figure 5). Though the SUV bias is extremely low for LD images, 

increased variance compared with FD images was observed (95% CI:-2, +2), reflecting their poor image 

quality. 

Figure 6 compares the deep learning predicted images (PIS and PSS) and images reconstructed from the 

low dose sinogram using four state of the art iterative reconstruction methods, including OSEM, 

OSEM+TOF, OSEM+PSF and OSEM+TOF+PSF. The full-dose sinogram was also reconstructed using 

OSEM and OSEM+TOF+PSF as reference. 

Supplemental Figure 2 depicts the region-wise quantitative accuracy of the tracer uptake for LD, PSS 

and PIS images. The standard deviation of tracer uptake in all brain regions (Supplemental Figure 3), SUV 

bias and its standard deviation within each brain region were calculated using Hammers’ N30R83 brain 

atlas to delineate the 83 brain regions. It was shown that the SUV bias was below 4% for PSS, PIS and LD 

images with LD exhibiting a relatively high STD compared to PIS and PSS. The PSS approach led to the 

lowest absolute average SUV bias (0.69 ± 0.7%) across all brain regions, while PIS and LD resulted in 

absolute average SUV bias of 1.35 ± 1.15% and 1.12 ± 0.93%, respectively (Table 4). Even though a very 

low SUV bias was observed in LD images, a remarkably increased STD was seen, reflecting the high noise 

level in LD images. Symmetrical left and right sides of the brain regions were merged reporting a single 

value to reduce the number of regions. Hence, the 83 brain regions were reduced to 44 in figure 6. The 

higher standard deviation of SUV bias was observed in LD images, reflecting the noisy nature of low count 

images. Lower standard deviations were observed in PSS compared to PIS. 

Supplemental Figures 4 and 5 shows the relative error (%) of 28 radiomic features calculated for PSS 

and PIS images across the 83 brain regions for the 20 subjects in the test dataset. The mean RE of SUVmean 
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calculated across all brain regions was 0.24 ± 0.96% and 1.05 ± 1.44% for PSS and PIS, respectively. The 

largest SUVmean bias between PSS and PIS images with respect to reference FD images were observed in 

the brainstem (4.04%), corp-callosum (3.8%), pallidum (3.08%), caudate nucleus (1.6%) and superior 

frontal gyrus (3.38%). SUVmax had a mean RE of 1.18 ± 1.5% and 0.81 ± 0.51% for PIS and PSS, 

respectively. The mean RE of the homogeneity radiomic feature belonging to GLCM category was -1.07 ± 

1.77%, 0.28 ± 1.4% for PIS and PSS, respectively. Only 12 and 5 regions had a RE greater than 2% for PIS 

and PSS, respectively. The middle frontal gyrus, medial orbital gyrus, and posterior orbital gyrus displayed 

substantial variances for dissimilarity radiomic feature of both PIS and PSS (3.68% vs. 4.89%, -1.7% vs. 

2.91% and -1.7% vs. 2.9%). 

 

DISCUSSION 

Table 5 summarizes the study design and outcomes of previous works reporting on the prediction of FD 

PET images from LD images based using deep learning approaches (15-21). In this work, we aimed to 

generate diagnostic quality FDG brain PET images from LD PET data in the image or projection domains 

corresponding to only just 5% of injected activity compared to the regular FD scan. The training of the 

neural network was performed using a so-called 2.5 D scheme, considering a batch of image slices as input, 

since there is a dependence of tracer distribution along the z-axis. Hence, by including the neighbouring 

slices, the model would be able to capture the underlying morphologic information. In contrast to previous 

studies, we aimed to train the network in projection and image domains to evaluate the performance of both 

approaches for estimation of FD PET images. It was shown that the synthesized FD images predicted from 

LD sinograms had a superior image quality and lower regional SUV bias and variance compared with both 

LD and FD images predicted in image-space. This highlights the value of employing raw data in sinogram 

space (400×168×621 =41’731’200) rather than the data in image space (101 × 101 × 71=724’271). The data 

representation in image-space is different from representation in projection-space. Let’s consider an ideal 

point source located at the centre of the field-of-view, which would appear as a hot spot in the corresponding 

location in image space. The same point source would be reflected in sinogram space by numerous 

correlated lines of response, conveying different data representations of the same element. The 

extended/detailed data available in sinogram space helped the convolutional network to better decode the 

underlying features, thus resulting in superior performance. The convolutional network trained in the image 

domain applied simplistic noise reduction, thus leading to blurred, highly smoothed and slightly biased FD 

images.  

The qualitative assessment of image quality performed by nuclear medicine specialists demonstrated the 

superior performance of the PSS approach, showing close agreement between PSS and the reference FD 

images. The RMSE calculated on LD and synthesized PSS and PIS images were 0.41 ± 0.03, 0.17 ± 0.01 
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and 0.18 ± 0.04, respectively, reflecting the effectiveness of model training in the sinogram space (p-

value<0.05). Moreover, the SSIM improved from 0.84 ± 0.04 for LD to 0.96 ± 0.03 for PIS images and 

further to 0.97 ± 0.02 for PSS images. It would be enlightening to consider the resulting metrics in 

conjunction with those obtained from LD images for better interpretation of the extent of improvement 

achieved by the proposed methods. For instance, Ouyang et al. (21) claimed that only 1% of the standard 

dose was used yielding LD images with better or at least comparable SSIM (0.86 vs 0.84) and RMSE (0.2 

vs 0.4) compared to ours with 5% of the full dose. This might partly stem from differences in terms of 

sensitivity between PET scanners, which directly affects the quality of the PET images. In this regards, 

previous studies conducted on the GE SIGNA PET/MRI (1, 2) took advantage of its higher sensitivity 

(21cps/kBq) and better count-rate performance characteristics (peak NEC of 210 kcps at 17.5 kBq/cc) 

compared to the Biograph mCT scanner used in this study with considerably lower detection sensitivity (9.7 

cps/kBq) and count-rate performance (NEC = 180 kcps at 28 kBq/cc). Furthermore, their technique relied 

on support from coregistered MR images, which could partly explain why 5% LD image in the present study 

and 1% LD in abovementioned works resulted in comparable RMSE (~ 0.15). 

The quantitative analysis of 83 brain regions in terms of 28 radiomic features showed high repeatability 

of the radiomic features for both PSS and PIS techniques. From the 2324 data points corresponding the to 

the number of regions multiplied by the number of radiomic features, only 3 and 9 data points for PIS and 

PSS, respectively, had a RE larger than 5%, with the remaining data points exhibiting no significant REs. 

The quantitative evaluation showed less than 1% mean absolute error in most brain regions for PSS. We 

involved both normal and abnormal patients to offer a heterogeneous dataset. Neurologic abnormalities 

present in our dataset included patients presenting with cognitive symptoms of possible neurodegenerative 

disease. Since the dataset for the training contained both normal and abnormal patients, data augmentation 

was applied to avoid overfitting and guarantee robust and effective training. The Bland & Altman analysis 

showed lower bias and variance in the 83 regional SUVmean values obtained from PSS and PIS PET images 

compared with LD images. The Bland & Altman plots further demonstrated the superior performance of 

the PSS approach, resulting in SUV values that are comparable to the original FD images. 

In terms of computation time, the training in the image domain is less demanding than training in the 

projection-space. Training in the image domain took ~38h versus ~210h in the sinogram space. Moreover, 

synthesis of a single PET image (after training) in the image domain takes ~100 seconds versus ~370 

seconds required in the sinogram space. This stems from the increased data size and consequently added 

processing burden for the sinogram space implementation. 

One of the limitations of the present study was that during the clinical evaluation, the LD images were 

relatively easy to be identified by physicians. Hence, they could have been subconsciously biased and 

assigned lower scores to these images. Moreover, patient motion during the PET/CT scan, particularly for 
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patients suffering from dementia that are more susceptible to involuntary motion, may impair image quality 

of both LD and FD PET images. However, motion might affect LD and FD PET images differently since 

the randomly selected events for creation of the LD images might not exactly follow the same motion pattern 

in the FD PET data. 

 

CONCLUSION 

We have demonstrated that high quality FDG brain PET images can be generated using deep learning 

approaches either in the image domain or projection (sinogram) space. The noise was effectively reduced 

in the predicted PET images from the LD data. Prediction of FD PET images in the sinogram space exhibited 

superior performance, resulting in higher image quality and minimal quantification bias. 
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KEY POINTS 

QUESTION: Does implementation of deep learning-guided low-dose brain 18F-FDG PET imaging in 

projection-space improves performance over implementation in image-space? 

PERTINENT FINDINGS: Using a cohort study comparing 140 clinical brain 18F-FDG PET/CT studies, 

among which 100, 20 and 20 patients were randomly partitioned into training, validation and independent 

validation sets, we demonstrate through qualitative assessment and quantitative analysis demonstrated that 

the FD PET prediction in projection space led to superior performance, resulting in higher image quality 

and lower SUV bias and variance compared to FD PET prediction in the image domain.  

IMPLICATIONS FOR PATIENT CARE: The proposed deep learning-guided denoising technique 

enables substantial reduction of radiation dose to patients and is applicable in a clinical setting. 
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FIGURE 1. Schematic diagram of the modified 3D U-net, consisting of an encoder-decoder convolutional 

neural network. The tensors are indicated by the boxes whereas the arrows denote the computational 

operations. BN = batch normalization, ReLU = rectified linear unit activation. The number of channels is 

indicated beneath each box in the bottom left panel. The input and output of this network are LD and FD 

image PET pairs either in image or sinogram space. 
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FIGURE 2. Representative FDG brain PET image of a 65-year old male patient. The reference full-dose 

and the corresponding low-dose and predicted FD images in the image and sinogram space are presented. 

SUV bias maps for LD, PIS and PSS PET images with respect to the reference FD PET image are shown in 

the lower panel. 
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FIGURE 3. Result of image quality assessment by the two nuclear medicine specialists for LD, PIS, PSS 

and FD PET images. Mean scores are presented on the top of the bar plots. 1 = uninterpretable, 2 = poor, 3 

= adequate, 4 = good, 5 = excellent. 
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FIGURE 4. Joint histogram analysis of the LD PET images (left), predicted FD images in sinogram space 

(middle) and image space (right) versus FD PET images. 
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FIGURE 5. Bland & Altman plots of SUV differences in the 83 brain regions calculated for LD (left), PIS 

(middle) and PSS (right) PET images with respect to the reference FD PET images in the test dataset. The 

solid blue and dashed lines denote the mean and 95% confidence interval (CI) of the SUV differences, 

respectively. 
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FIGURE 6. Comparison of images of two clinical 18F-FDG brain PET studies (1 and 2) reconstructed from 

5% low dose sinograms using four different reconstruction algorithms, including (A) OSEM, (B) 

OSEM+TOF, (C) OSEM+PSF and (D) OSEM+TOF+PSF with deep learning-based predicted images in 

image space (E) and sinogram space (F). Reference full dose images reconstructed using (G) OSEM and 

(H) OSEM+TOF+PSF are also shown. 
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Table 1. Demographics of patients included in this study. 

 

  Training  Test  Validation 

Number  100  20  20 

Male/Female  45/55  11/9  8/12 

Age (Mean ± SD)  73±8  68±18  73±4.5 

Weight(Mean ± SD)  70±13  67±12  71±11 

Indication/Diagnosis  Cognitive symptoms of possible neurodegenerative etiology 
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Table 2. Summary of the 28 radiomic features belonging to the 6 main categories estimated for the 83 brain regions. 

Radiomic feature category  Radiomic feature 

Conventional indices  SUVmean 
SUVstd 
SUVmax 
SUV Q1 
SUV Q2 
SUV Q3 
TLG (mL) 

First‐order features ‐ Histogram  Kurtosis 
Entropy_log10 
Entropy_log2 

First‐order features ‐ Shape  SHAPE_Volume (ml) 
SHAPE_Volume (# Voxel) 

Grey‐Level Zone Length Matrix (GLZLM)  Short‐Zone Emphasis (SZE) 
Long‐Zone Emphasis (LZE) 
Short‐Zone Low Gray‐level Emphasis (SZLGE) 
Short‐Zone High Gray‐level Emphasis (SZHGLE) 
Long‐Zone Low Gray‐level Emphasis (LZLGLE) 
Long‐Zone High Gray‐level Emphasis (LZHGLE) 
Zone Percentage (ZP) 

Grey‐Level Run Length Matrix (GLRLM)  Short‐Run Emphasis (SRE) 
Long‐Run Emphasis (LRE) 
Short‐Run Low Gray‐level Emphasis (SRLGLE) 
Short‐Run High Gray‐level Emphasis( SRHGLE) 
Run Length Non‐Uniformity (RLNU) 
Run Percentage (RP) 

Grey Level Co‐occurrence Matrix (GLCM)  Homogeneity 
Energy 
Dissimilarity 
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Table 3. Comparison of the results obtained from analysis of image quality in LD PET images and predicted images in image (PIS) and 
sinogram (PSS) space for the validation dataset. SSIM: structural similarity index metrics, PSNR: peak signal to noise ratio, RMSE: 
root mean squared error. 

Validation dataset  SSIM  PSNR  RMSE 

PIS   0.97±0.02  34.60±1.08  0.18±0.02 

PSS   0.98±0.01  38.25±0.66  0.15±0.03 

LD  0.84±0.04  29.00±0.92  0.40±0.03 

P‐value (PIS vs. PSS)   0.022  0.019  0.016 

P‐value (PIS vs. LD)   0.037  0.021  0.036 

P‐value (PSS vs. LD)   0.042  0.025  0.030 

Test dataset  SSIM  PSNR  RMSE 

PIS   0.96±0.03  31.70±0.75  0.18±0.04 

PSS   0.97±0.02  37.30±0.71  0.17±0.01 

LD  0.82±0.15  29.92±0.71  0.41±0.04 

P‐value (PIS vs. PSS)   0.031  0.024  0.018 

P‐value (PIS vs. LD)  0.040  0.036  0.041 

P‐value (PSS vs. LD)  0.041  0.031  0.031 
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Table 4. Average and absolute average SUV bias േ STD calculated across the 83 brain regions for LD, PIS, and PSS PET images. 

 
PSS  PIS  LD 

Average SUV bias (%)   0.24±0.96  1.05±1.44  0.10±1.47 

Absolute average SUV bias (%)   0.69±0.70  1.35±1.15  1.12±0.93 
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Table 5. Summary of previous studies focusing on LD to FD PET conversion in brain PET imaging using deep learning techniques. 

 

Reference 
Nb. 

patients 
Input  Network architecture 

Injected activity 
(MBq) 

Low‐dose 
ratio (%) 

Tracer 
Scanning time 

(min) 
Time from injection 

to scan (min) 
Scanner model  Evaluation method and metrics 

(16)  11  LD PET,  
MRI (T1) 

Segmented brain tissues from MRI to build 
tissue‐specific models to predict standard‐
dose plus an iterative refinement strategy 

203±12  25  18F‐FDG  12  36  Siemens 
Biograph mMR 

Leave‐one‐out cross‐validation, SUV 
bias 

(8)  8  LD PET, 
 MRI (T1, DTI) 

Sparse representation based on mapping 
strategy and an incremental refinement 
scheme 

203±12  25  18F‐FDG  12  60  Siemens 
Biograph mMR 

NMSE,PSNR, contrast recovery, 
quantification bias 

(19)  16  LD PET  
MRI (T1) 

Deep auto‐context CNN architecture with 
three 4‐layers 

203±12  25  18F‐FDG  12  60  Siemens 
Biograph mMR 

NMSE, PSNR, Training and Testing 
time comparison, Training Loss vs. 
Iteration  

(22)  9  LD PET  2.5D U‐Net (modified)  370  0.5  18F‐FDG  40  45  GE SIGNA 
PET/MRI 

NRMSE, error maps 

(15)  40  LD PET MRI 
(T1, T2, DTI) 

2D U‐Net  330±30  1  18F‐
Florbetaben 

20  90‐110  GE SIGNA 
PET/MRI 

SSIM, PSNR, RMSE, clinical image 
quality scoring, Bland‐Altman 
analysis 

(20)  16  LD PET  3D conditional GANs  203±12  25  18F‐FDG  12  36  Siemens 
Biograph mMR 

SSIM, PSNR, RMSE, quantification 
bias 

(21)  40  LD PET  2.5D GAN  330±30  1  18F‐
Florbetaben 

20  90‐111  GE SIGNA 
PET/MRI 

SSIM, PSNR, RMSE, clinical image 
quality scoring, error maps 

This work in 
image space 

140  LD PET image  2.5D U‐Net (modified)  205±10  5  18F‐FDG  20  34  Siemens 
Biograph mCT 

SSIM, PSNR, RMSE, clinical image 
quality scoring, Bland‐Altman 
analysis, quantification bias, 
radiomic features, joint histogram, 
error maps 

This work in 
projection space 

140  LD PET 
sinograms 

2.5D U‐Net (modified)  205±10  5  18F‐FDG  20  34  Siemens 
Biograph mCT 

SSIM, PSNR, RMSE, clinical image 
quality scoring, Bland‐Altman 
analysis, quantification bias, 
radiomic features, joint histogram, 
error maps 
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Supplemental Figure 1. Representative clinical 18F-FDG brain PET images from two extremes of image evaluation. The 
images shown are (A) low-dose, (B) deep learning prediction in image space, (C) deep learning prediction in sinogram 
space, (D) full-dose. The red numbers indicate scores assigned by one expert physician to images. 
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Supplemental Figure 2. Plots of SUV bias standard deviation (left panel) and mean SUV bias (%) (right panel) in the 

different brain regions for LD, PIS, and PSS PET images. The left and right regions were merged, thus reducing the number 

of brain regions to 44. 
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Supplemental Figure 3. Plot of SUV standard deviation in the different brain regions for LD, PIS, and PSS PET images. 

The left and right regions were merged, thus reducing the number of brain regions to 44. 
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Supplemental Figure 4.  Heat map of the relative error of 28 radiomics features calculated across 83 brain 

regions for PIS PET images with respect to reference FD PET images. 
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Supplemental Figure 5.  Heat map of the relative error of 28 radiomics features calculated across 83 brain 

regions for PSS PET images with respect to reference FD PET images. 
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