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Original article

A convolutional neural network-based system to estimate the 
arterial plasma radioactivity curve in 18F-FDG dynamic brain 
PET study
Keisuke Kawauchia, Mui Saitoa, Kentaro Nishigamia and Chietsugu Katohb

Purpose Quantitative images of metabolic activity 
can be derived through dynamic PET. However, the 
conventional approach necessitates invasive blood 
sampling to acquire the input function, thus limiting its 
noninvasive nature. The aim of this study was to devise 
a system based on convolutional neural network (CNN) 
capable of estimating the time-radioactivity curve of 
arterial plasma and accurately quantify the cerebral 
metabolic rate of glucose (CMRGlc) directly from PET 
data, thereby eliminating the requirement for invasive 
sampling.

Methods This retrospective investigation analyzed 
29 patients with neurological disorders who underwent 
comprehensive whole-body 18F-FDG-PET/CT 
examinations. Each patient received an intravenous 
infusion of 185 MBq of 18F-FDG, followed by dynamic 
PET data acquisition and arterial blood sampling. A CNN 
architecture was developed to accurately estimate the 
time-radioactivity curve of arterial plasma.

Results The CNN estimated the time-radioactivity curve 
using the leave-one-out technique. In all cases, there was 
at least one frame with a prediction error within 10% in at 

least one frame. Furthermore, the correlation coefficient 
between CMRGlc obtained from the sampled blood and 
CNN yielded a highly significant value of 0.99.

Conclusion The time-radioactivity curve of arterial 
plasma and CMRGlc was determined from 18F-FDG 
dynamic brain PET data using a CNN. The utilization 
of CNN has facilitated noninvasive measurements of 
input functions from dynamic PET data. This method 
can be applied to various forms of quantitative analysis 
of dynamic medical image data. Nucl Med Commun 44: 
1029–1037 Copyright © 2023 The Author(s). Published by 
Wolters Kluwer Health, Inc.
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Introduction
PET has been used in the realm of brain functional 
imaging. Dynamic brain PET imaging using Fluorine-18 
fluorodeoxyglucose (18F-FDG) permits the examination 
of the cerebral metabolic rate of glucose (CMRGlc) [1]. 
Nevertheless, the conventional and widely accepted tech-
nique for analyzing the CMRGlc involves the extraction 
of arterial blood samples and the derivation of the time-ra-
dioactivity curve from arterial plasma, which necessitates 
an invasive procedure for patients and exposes medical 
personnel to radiation [2]. Consequently, the search for 
noninvasive alternatives to generate input functions has 
been underway [3,4]. Nonetheless, existing methods 
suffer from limitations, such as insufficient sample size 
and diminished accuracy, thus failing to supplant blood 
sampling. Therefore, we propose a novel approach that 
employs a convolutional neural network (CNN)-based 

system to estimate the time-radioactivity curve of arterial 
plasma.

AI studies in the domain of PET have documented find-
ings, including a study that automated the classification 
of 18F-FDG whole-body PET images into three cate-
gories: benign, malignant, or equivocal [5]. FDG-PET/
computed tomography (CT) images of patients with lung 
cancer and lymphoma have demonstrated exceptional 
diagnostic performance in fully automating the locali-
zation of FDG uptake patterns and identifying foci that 
are either suspicious or nonsuspicious for cancer classifi-
cation using a CNN [6]. Furthermore, a study reported 
the generation of a 511-keV photon attenuation map 
by inputting whole-body 18F-FDG-PET/CT images 
from 100 patients with cancer into a CNN, which exhib-
ited greater reliability than the four-fraction method 
employed in current whole-body PET/MRI scans [7]. 
Moreover, a study detailed the classification of lung can-
cer foci on FDG-PET/CT images as either tumor stages 
T1-2 or T3-4 by training a CNN on images obtained 
from patients who underwent staging using FDG-PET/
CT images [8]. Hence, most reports in nuclear medicine, 
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particularly in the realm of PET, pertained to the clas-
sification of images and the extraction of lesions, with 
some demonstrating efficacy in disease classification 
and attenuation correction. Nevertheless, regression 
analyses of data derived from images have seldom been 
documented, despite the existence of studies that have 
reported regression prediction of age and weight based 
on whole-body PET images [9].

This study aimed to devise a CNN-based framework 
capable of estimating the time- radioactivity curve 
of arterial plasma and CMRGlc from PET data. Our 
hypothesis posited that such an approach would facilitate 
a noninvasive and quantitative investigation of cerebral 
energy metabolism.

Methods
Subjects
This study comprised a cohort of 29 patients diagnosed 
with neurological disorders (mean age: 37.3 ± 13.2 years; 
11 males and 18 females). The Ethics Committee of 
Hokkaido University Hospital Medical Information 
Network Clinical Trials Registry (UMIN000018160) pro-
vided approval for this study. All participants provided 
written informed consent. Note however that this further 
investigative study utilized previously acquired data ret-
rospectively so the need for further ethical approval was 
waived.

For each patient, an intravenous infusion of 185 MBq of 
18F-FDG was administered, followed by dynamic PET 
data acquisition and arterial blood sampling. Dynamic 
PET images of the brain were acquired over a period 
of 60 min, with 22 frames. The time intervals for frame 
collection were as follows: 20, 50, 70, 100, 140, 180, 220, 
270, 330, 390, 450, 570, 750, 930, 1110, 1350, 1650, 1950, 
2250, 2550, 2850, and 3150 s (Fig. 1). Concurrently, 1 mL 
of arterial blood was collected from the forearm artery via 
an indwelling needle. Immediately after blood collection, 

centrifugation was performed to separate the plasma and 
cellular components.

18F-FDG dynamic imaging and blood sampling
Arterial plasma radioactivity counts were measured using 
a counter (ARC-380CL manufactured by Aloka), and the 
arterial plasma time-radioactivity curve was obtained. 
The arterial blood time-radioactivity curve is not an accu-
rate input function for compartmental model analysis of 
18F-FDG accumulation in the brain, because activity is 
also taken up by erythrocytes. Therefore, we obtained 
an accurate arterial plasma time-radioactivity curve by 
removing erythrocyte radioactivity that did not enter 
brain tissue.

Scanner configuration
PET investigations were performed employing an ECAT 
EXACT HR+ scanner manufactured by CTI/Siemens, 
which exhibited in-plane and axial resolutions of 4.8 
and 5.6 mm, respectively. The field of view possessed a 
diameter of 23.4 cm. Through continuous axial motion of 
the gantry, the PET scanner generated 63 tomographic 
images at intervals of 2.425 mm. These image slices 
were oriented parallel to the orbitomeatal line. To cor-
rect tissue attenuation, a transmission scan employing a 
68-Ge line source was performed before emission scan-
ning. PET images were reconstructed using the filtered 
back projection method employing a ramp filter. The 
resultant PET image from this device had a half width 
(FWHM) of 4.8 mm, and each pixel corresponded to an 
actual length of 2.5 × 2.5 × 6.3 mm. The 22 frames of the 
dynamic PET images were reconstructed using filtered 
back projection with a similar matrix size of 128 × 128 in 
the axial plane and a voxel size of 2.5 × 2.5 × 6.3 mm.

Convolutional neural network
A neural network represents a computational paradigm 
that emulates the structure and functionality of neurons 

Fig. 1

(a) A typical example of slice images in which the internal carotid is most clearly depicted in each frame of 18F-FDG dynamic brain PET. (b) A typical 
example of the time-radioactivity curve of arterial plasma.
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in the brain. It comprises three fundamental layers: input, 
hidden, and output layers. Each layer consists of inter-
connected nodes connected by edges. A ‘deep neural net-
work’ (DNN) refers to a neural network that incorporates 
multiple hidden layers. The use of DNNs in machine 
learning is commonly known as ‘deep learning’. A CNN 
stands as a specialized DNN variant that demonstrates 
remarkable efficacy in tasks involving image recogni-
tion. Unlike traditional approaches for image recognition, 
CNNs do not rely on predefined image features. In this 
study, we proposed adopting a CNN for classifying FDG-
PET brain images.

Architectures
In this study, we used a network model based on the 
Xception architecture [10]. Xception has exhibited 
remarkable effectiveness in various medical imaging 
domains, encompassing clinical images of basal cell carci-
noma and pigmented nevi, v, and non-contrast-enhanced 
CT images for identifying the ultra-high-density middle 
cerebral artery sign in patients with acute ischemic stroke 
[11–13]. Xception is a model that optimizes parameter 
count and computational complexity by implementing 
depth-wise separable convolutions.

Model training and testing
During the training phase of the model, we imple-
mented an ‘early stopping’ technique to decrease over-
fitting. Early stopping serves to monitor the loss function 
of both training and validation processes, allowing us to 
stop the learning process before it becomes excessively 
focused. This approach has found applications in diverse 
machine learning methodologies [14]. The CNN used 
in this study was fed a complete set of image frames as 
inputs. Specifically, we used 22-frame PET images in a 
single axial plane, that captured on capturing the inter-
nal carotid most prominently. Given the use of regres-
sion models in this study, we supplemented the image 
inputs with arterial plasma time- radioactivity curve data. 
Furthermore, the output layer of the model was con-
figured to consist of a single unit. In the model testing 
phase, a regression model was created using a CNN to 
predict the arterial plasma time-radioactivity curve. For 
training, validation, and evaluation, we employed the 
leave-one-out cross-validation (LOOCV) methodology 
[15]. Within the LOOCV framework, one case was cho-
sen from 29 cases as the test case, while the remaining 28 
cases were used for training and validation. Among the 
28 cases, 21 were allocated for training and seven were 
used for validation. This process was repeated for all test 
cases, resulting in 29 iterations.

Gradient-weighted class activation mapping
To address the challenge of explaining the decision-mak-
ing process in artificial intelligence (AI) models devel-
oped through deep learning, we have incorporated a 

visualization technique known as Gradient-weighted 
Class Activation Mapping (Grad-CAM) [16]. Grad-CAM 
enables the identification of image regions that contrib-
ute to the activation of the neural network, thereby allow-
ing for a visual understanding of the CNN’s estimation 
basis. In this study, we employed Grad-CAM to predict 
each test case and performed an additional experiment to 
visualize the basis for the estimation results. Grad-CAM 
assigns a continuous value to each pixel, and we applied a 
threshold of 90% of the maximum value to delineate the 
activated area.

Hardware and software environments
This experiment was performed in the following envi-
ronments: operating system: Windows 10 pro 64 bit; CPU: 
Intel Core i9-10900K; GPU: NVIDIA GeForce RTX 
3090 24GB; Framework: TensorFlow 2.5.0; Language: 
Python 3.8.5.

3-compartment model analysis
For each patient, 100 regions of interest (ROIs) were 
positioned on the cerebral images. The size of the 
ROIs was one pixel, and the length of the pixel size was 
2.5 × 2.5 × 6.3 mm. The time- radioactivity curve X(t) for 
each ROI was calculated. The CMRGlc in each ROI was 
measured using the following equation in the 3-compart-
ment model analysis:

� ��� � �� ��� ��� ���

� �� ���

��

� �� ��� ������ � �� ���

� �� ���
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� �� ���

��

� �� ��� ���� �� � ���

where Xe(t) and Xm(t) are the time-radioactivity curves 
in the first and second tissue compartments, respectively. 
Cp(t) is plasma activity (Fig. 2). K1 and k2 are the rate 
constants of FDG uptake from the plasma into the tissue 
and from the tissue back into the plasma, respectively. 
k3 and k4 are the rate constants for the phosphorylation 
of FDG by hexokinase and dephosphorylation of FDG-
6-PO4 to FDG, respectively (Fig. 3).

Figure 4 also shows that tissues, such as the skull and 
scalp, have high k2 values due to low glucose uptake 
and metabolism (relying predominantly on fatty acid 
metabolism. Xm(t) indicates the tissue that requires glu-
cose. The CMRGlc was calculated using the following 
equation:

���
�� � ����� ������� ��	�� � �� � ��
 ��� � ��� 
��

where LC is a lumped constant of 0.89 [17].

D
ow

nloaded from
 http://journals.lw

w
.com

/nuclearm
edicinecom

m
 by B

hD
M

f5eP
H

K
av1zE

oum
1tQ

fN
4a+

kJLhE
Z

gbsIH
o4X

M
i0hC

yw
C

X
1A

W
nY

Q
p/IlQ

rH
D

3i3D
0O

dR
yi7T

vS
F

l4C
f3V

C
4/O

A
V

pD
D

a8K
K

G
K

V
0Y

m
y+

78=
 on 10/26/2023



1032 Nuclear Medicine Communications  2023, Vol 44 No 11

Results
The model underwent training for an average of 70 ± 27 
epochs employing an early stopping algorithm. The train-
ing phase required an average of 560 ± 216 s, while pre-
diction per patient took <0.1 s.

The time-radioactivity curve, estimated by the CNN 
employing LOOCV, was compared with the corre-
sponding curve derived from arterial blood. In each 
case, the prediction error was at least 10% in at least 
one frame. In 21 cases, it was verified that >18 of the 22 
frames exhibited a prediction error within a 10% mar-
gin. Nevertheless, the remaining eight cases showed 
numerous frames with prediction errors exceeding 10% 
(Table 1).

Figure 5 displays the arterial plasma time- radioactivity 
curves acquired through both the CNN-based method 
and traditional blood sampling. The accurate outcome 
of our proposed methodology using a CNN has demon-
strated the achievement of comparable fittings, inde-
pendent of the acquisition of blood samples.

Two challenges commonly encountered in machine and 
deep learning are underfitting and overfitting. These 
phenomena can be visualized by analyzing a loss curve 
plotted against the number of epochs. In the case of 
underfitting, the loss curve continues to decrease for both 
the training and validation datasets. Conversely, overfit-
ting is characterized by a training loss curve approaching 
100%, while the validation loss curve diverges from it. 
Figure 6 illustrates the loss curve for one of the 29 trials 
performed in this study. In this particular instance, the 
training and validation loss curves did not deviate sig-
nificantly, indicating that the training process achieved 
an optimal balance without underfitting or overfitting. 
Similar trends were observed across the remaining 28 
trials, further supporting the absence of underfitting or 
overfitting.

Comparison with CMRGlc
In each test patient, 100 ROIs were strategically posi-
tioned within the brain (Fig. 7). These ROIs were auto-
matically defined as single-pixel regions every 2 cm 
along the vertical and horizontal axes, excluding those 
located within the ventricles or outside the brain. Time-
radioactivity curves were obtained from brain tissue, 
and the CMRGlc was calculated using a 3-compartment 
model. The results are presented in Fig.  8a. Notably, 
the correlation coefficient between the CMRGlc values 
derived from blood sampling and those estimated by 
the CNN demonstrated a significantly high correlation 
of 0.99. According to established guidelines [18], a cor-
relation coefficient of ≥0.5 indicates a strong correlation. 
Figure 8b illustrates the Brand–Altman plot, where the 
vertical axis represents the difference (DIFF) between 
the CMRGlc values obtained from blood sampling and 
those estimated by the CNN, and the horizontal axis 
represents the average (MMEAN) of these values. The 
dashed line represents the limits of agreement (LOA), 
calculated as ‘mean DIFF ± 1.96 × SD of DIFF’. If 95% 
of the DIFF values fall within the LOA, it indicates that 
the error follows a normal distribution and can be con-
sidered consistent between the CMRGlc values obtained 
from blood sampling and those estimated by the CNN. 
The findings of this study demonstrated a high level of 
consistency, with 97% of the DIFF values falling within 
the LOA.

Grad-CAM
We employed Grad-CAM to discern the precise anatomical 
regions within the image from which the neural network 
extracted the most salient information. Exemplary instances 

Fig. 2

Arterial plasma time-radioactivity curve Cp(t) and tissue time-radioac-
tivity curve X(t) at any position in the brain obtained from PET images. 
Where Xe(t) and Xm(t) are the time-radioactivity curves in the first and 
second tissue compartments, respectively. X(t) is the sum of X e(t) and 
Xm(t).

Fig. 3

The diagram illustrates the velocity constants employed in the analysis of 
a three-compartment model. Specifically, K1 and k2 represent the rate 
constants governing the uptake of FDG from the plasma into the tissue 
and its subsequent return from the tissue to the plasma, respectively. 
Similarly, k3 and k4 denote the rate constants involved in the phospho-
rylation of FDG by hexokinase and the dephosphorylation of FDG-
6-PO4 to FDG, respectively. The unit of K1 is mL/min/g, while k1, k2, 
and k3 are expressed in/min. These values serve as essential parameters 
for the calculations performed in the three-compartment model analysis.

D
ow

nloaded from
 http://journals.lw

w
.com

/nuclearm
edicinecom

m
 by B

hD
M

f5eP
H

K
av1zE

oum
1tQ

fN
4a+

kJLhE
Z

gbsIH
o4X

M
i0hC

yw
C

X
1A

W
nY

Q
p/IlQ

rH
D

3i3D
0O

dR
yi7T

vS
F

l4C
f3V

C
4/O

A
V

pD
D

a8K
K

G
K

V
0Y

m
y+

78=
 on 10/26/2023



CNN-based system to estimate radioactivity curve Kawauchi et al. 1033

of this analysis are illustrated in Fig. 9. It is noteworthy that 
all patients presented at least one image where an activa-
tion region encompassing the vicinity of the internal carotid 

artery was clearly evident. Conversely, Fig. 10 provides an 
example of Grad-CAM highlighting areas other than the 
internal carotid artery. Specifically, (A) delineates enhanced 
regions surrounding the optic nerve, while (B) identifies 
enhanced areas adjacent to the cerebellum. These particu-
lar images manifest notable prediction errors.

Discussions
In this study, we employed a CNN architecture known as 
Xception that leverages depth-wise separable convolution 

Fig. 4

Distribution image of the rate constants K1, k2, k3, k4 in an exemplar series of 18F-FDG-PET brain images.

Table 1  Mean error and percentage of slices within 10% error

 Mean error % Percentage of slices within 10% error 

Patient_01 3.9 100%
Patient_02 6.1 86%
Patient_03 1.6 100%
Patient_04 5.0 86%
Patient_05 4.2 95%
Patient_06 1.7 100%
Patient_07 3.3 100%
Patient_08 4.3 95%
Patient_09 3.3 100%
Patient_10 17.3 32%
Patient_11 3.3 100%
Patient_12 5.5 91%
Patient_13 2.5 100%
Patient_14 17.6 41%
Patient_15 9.0 64%
Patient_16 5.1 91%
Patient_17 12.6 64%
Patient_18 3.5 95%
Patient_19 8.4 77%
Patient_20 3.4 100%
Patient_21 3.0 100%
Patient_22 2.9 100%
Patient_23 2.7 100%
Patient_24 33.8 18%
Patient_25 4.2 100%
Patient_26 47.3 14%
Patient_27 30.2 18%
Patient_28 34.5 9%
Patient_29 2.7 95%

Fig. 5

The arterial plasma time-radioactivity curve presents the calculated 
mean and SD from the analysis of all 29 cases. This visual representa-
tion underscores the exceptional uniformity observed in the fitting of 
the curves.
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effectively diminishing the number of parameters and 
computational complexity compared with conventional 
approaches. Consequently, in 21 cases, we ascertained 
that >18 of the 22 frames manifested a prediction error 
within a range of 10%. Moreover, the correlation coeffi-
cient between the estimated CMRGlc derived from blood 
samples and those acquired from the CNN exhibited a 
highly significant value of 0.98. These compelling find-
ings indicate that the CNN can accurately estimate the 
arterial plasma time-radioactivity curve using 18F-FDG 

dynamic brain PET data, thereby enabling noninvasive 
quantitative analysis of diverse dynamic imaging data.

We performed deep learning analysis to estimate the 
arterial blood time-radioactivity curve from dynamic 
brain 18F-FDG-PET images specifically targeting the 
internal carotid region. As a straightforward approach, 
we postulated that the arterial blood time-radioactivity 
curve can be derived by setting the ROI encompassing 
the internal carotid in the dynamic image and comput-
ing the maximum radioactivity at each timepoint. This 
choice is motivated by the fact that the PET device used 
in this study had an FWHM of 4.8 mm, while the pixel 
size of the PET image output was 2.5 mm. Furthermore, 
the inner diameter of the internal carotid in the skull 
ranges from approximately 2–3 mm, and considering the 
partial volume effect, accurate quantification of arterial 
blood radioactivity passing through the internal carotid 
lumen is unfeasible with an image possessing an FWHM 
of 4.8 mm. The desired parameter for analysis is not the 
complete time-radioactivity curve of whole blood, but 
rather the arterial plasma’s time-radioactivity curve after 
the removal of erythrocytes. Given that blood cell com-
ponents are not taken up by brain tissue, the time-radio-
activity curve of 18F-FDG absorbed by blood cells should 
be excluded from the input function during compartment 
model analysis. Therefore, in this study, we developed a 
CNN model that estimates the arterial plasma time-ra-
dioactivity curve, instead of the arterial blood time-ra-
dioactivity curve, using dynamic brain PET images of 
18F-FDG.

Numerous techniques have been reported in the litera-
ture or estimating the input function in brain PET using 
image data. Typically, these approaches involve defining 
an ROI encompassing the relevant vascular structures in a 

Fig. 6

An example of a training and verification loss curve is in this study. The 
vertical axis represents the value of the loss function, the horizontal 
axis represents the number of epochs, and the blue and orange colors 
depict the training and validation loss curves, respectively. The training 
was completed at 70 ± 27 epochs due to early stopping, and both the 
training and evaluation gradually declined.

Fig. 7

100 regions of interest (ROI) in the brain of each case. ROIs in the image were automatically set to 1-pixel ROIs every 2 cm in the vertical and hori-
zontal directions. However, the ROIs inside the ventricle and outside the brain were excluded.
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CNN-based system to estimate radioactivity curve Kawauchi et al. 1035

PET scan to generate an input function. However, a per-
sistent challenge lies in generating a metabolite-corrected 
plasma curve from a whole blood curve. Consequently, 
reliance on arterial or venous blood sampling remains 
necessary [2]. In the proposed methodology, blood sam-
pling is used to train the CNN. Nevertheless, the find-
ings of this study suggest that the use of a well-trained 

CNN might obviate the need for blood sampling during 
examinations.
On the contrary, the criteria employed by the CNN remain 
opaque, making the cause behind the heightened predic-
tion error in the eight cases unknown. Nevertheless, it 
was observed that in instances where the prediction was 
unsuccessful, the visibility of the internal carotid was 

Fig. 8

(a) Scatter plot of the time-radioactivity curve of arterial plasma from blood sampling and by CNN. The correlation coefficient is 0.99, indicating that 
there is a strong correlation between the two. (b) The Brand–Altman plot (vertical axis; DIFF) (difference between CMRGlc obtained from blood 
sampling data and estimated by CNN), horizontal axis: MMEAN (average of CMRGlc obtained from blood sampling data and estimated by CNN). 
The results obtained in this study were consistent because 97% of DIFF was included in the LOA.

Fig. 9

Typical examples of Grad-CAM: CNN was found to respond to the internal carotid in slices containing the internal carotid.
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diminished compared with other cases. Furthermore, as 
depicted in Fig. 9, Grad-CAM exhibited a proclivity to 
focus on regions beyond the internal carotid. Based on 
these observations, it is plausible to speculate that the 
challenge in visualizing the internal carotid may have 
contributed to the diminished prediction accuracy, 
despite our efforts to identify frames where the internal 
carotid was most prominently discernible. To address 
this, we propose that augmenting the number of images 
showcasing characteristics similar to those of the training 
data would prove useful.

CNNs are renowned for their ability to classify images 
based on distinctive features present within them. 
Grad-CAM, a visualization technique, can illuminate 
the ‘region of AI focus’ and holds promise in promoting 
the development of explainable AI, in contrast to the 
conventional ‘black box’ paradigm, thereby fostering 
increased user confidence. The findings of this investi-
gation substantiate that in numerous instances, CNNs 
exhibit discernible responses to the internal carotid, 
as exemplified in Fig. 9. Nonetheless, there were cer-
tain cases where Grad-CAM accentuated regions dis-
tinct from the internal carotid, as illustrated in Fig. 10. 
Consequently, this study validates the potential for 
visualizing the AI’s zone of interest, enabling fur-
ther exploration of the foundations underpinning its 
predictions.

Conclusion
The use of a CNN has demonstrated the potential for 
estimating time- radioactivity curves in arterial vessels 
derived from 18F-FDG brain PET dynamic data. This 
application of CNNs offers a noninvasive method for 
quantifying input functions extracted from dynamic 
PET data, thereby presenting an effective approach for 

the quantitative analysis of various dynamic medical 
imaging datasets.

Acknowledgements
This study was supported by the Japan Society for the 
Promotion of Science (JSPS N0.22K0765802).

All procedures performed in studies involving human 
participants were by the ethical standards of the institu-
tional and/or national research committee and with the 
1964 Helsinki Declaration and its later amendments or 
comparable ethical standards.

The institutional review board of Hokkaido University 
Hospital approved the study (UMIN000018160) and 
waived the need for written informed consent from each 
patient because the study was conducted retrospectively.

Conflicts of interest
There are no conflicts of interest.

References
 1 Cai W, Feng D, Fulton R, Siu WC. Generalized linear least squares 

algorithms for modeling glucose metabolism in the human brain with 
corrections for vascular effects. Comput Methods Programs Biomed 2002; 
68:1–14.

 2 van der Weijden CWJ, Mossel P, Bartels AL, Dierckx RAJO, Luurtsema 
G, Lammertsma AA, et al. Non-invasive kinetic modelling approaches for 
quantitative analysis of brain PET studies. Eur J Nucl Med Mol Imaging 
2023; 50:1636–1650.

 3 Bartlett EA, Ananth M, Rossano S, Zhang M, Yang J, Lin S, et al. 
Quantification of positron emission tomography data using simultaneous 
estimation of the input function: validation with venous blood and replication 
of clinical studies. Mol Imaging Biol 2019; 21:926–934.

 4 Zanotti-Fregonara P, Chen K, Liow JS, Fujita M, Innis RB. Image-
derived input function for brain PET studies: many challenges and few 
opportunities. J Cereb Blood Flow Metab 2011; 31:1986–1998.

 5 Kawauchi K, Furuya S, Hirata K, Katoh C, Manabe O, Kobayashi K, et al. A 
convolutional neural network-based system to classify patients using FDG 
PET/CT examinations. BMC Cancer 2020; 20:227.

Fig. 10

There were cases in which Grad-CAM enhanced areas other than the internal carotid. (a) The area around the optic nerve is enhanced. (b) The area 
around the cerebellum was enhanced.

D
ow

nloaded from
 http://journals.lw

w
.com

/nuclearm
edicinecom

m
 by B

hD
M

f5eP
H

K
av1zE

oum
1tQ

fN
4a+

kJLhE
Z

gbsIH
o4X

M
i0hC

yw
C

X
1A

W
nY

Q
p/IlQ

rH
D

3i3D
0O

dR
yi7T

vS
F

l4C
f3V

C
4/O

A
V

pD
D

a8K
K

G
K

V
0Y

m
y+

78=
 on 10/26/2023



CNN-based system to estimate radioactivity curve Kawauchi et al. 1037

 6 Sibille L, Seifert R, Avramovic N, Vehren T, Spottiswoode B, Zuehlsdorff S, 
et al. 18F-FDG PET/CT uptake classification in lymphoma and lung cancer by 
using deep convolutional neural networks. Radiology 2020; 294:445–452.

 7 Hwang D, Kang SK, Kim KY, Seo S, Paeng JC, Lee DS, et al. Generation of 
PET attenuation map for whole-body time-of-flight 18F-FDG PET/MRI using 
a deep neural network trained with simultaneously reconstructed activity 
and attenuation maps. J Nucl Med 2019; 60:1183–1189.

 8 Kirienko M, Sollini M, Silvestri G, Mognetti S, Voulaz E, Antunovic L, et al. 
Convolutional neural networks promising in lung cancer t-parameter assessment 
on baseline FDG-PET/CT. Contrast Media Mol Imaging 2018; 2018:1382309.

 9 Kawauchi K, Hirata K, Katoh C, Ichikawa S, Manabe O, Kobayashi K, 
et al. A convolutional neural network-based system to prevent patient 
misidentification in FDG-PET examinations. Sci Rep 2019; 9:7192.

 10 Chollet F. Xception: Deep learning with depthwise separable convolutions. 
Proceedings - 30th IEEE conference on computer vision and pattern 
recognition, CVPR 2017. IEEE. 2017. pp. 1800–1807.

 11 Xie B, He X, Huang W, Shen M, Li F, Zhao S. Clinical image identification 
of basal cell carcinoma and pigmented nevi based on convolutional neural 
network. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2019; 44:1063–1070.

 12 Shinohara Y, Takahashi N, Lee Y, Ohmura T, Kinoshita T. Development of a 
deep learning model to identify hyperdense MCA sign in patients with acute 
ischemic stroke. Jpn J Radiol 2020; 38:112–117.

 13 Rahimzadeh M, Attar A. A new modified deep convolutional neural network 
for detecting covid-19 from x-ray images. ArXiv. arXiv; 2020.

 14 Yen C-W, Young C-N, Nagurka M. A vector quantization method for 
nearest neighbor classifier design. Pattern Recognition Letters. 2004; 
25:725–731.

 15 Hastie T, Tibshirani R, Friedman J. The elements of statistical learning: data 
mining, inference, and prediction. Springer; 2009.

 16 Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. 
Grad-CAM: visual explanations from deep networks via gradient-
based localization. International Journal of Computer Vision. 2020; 
128:336–359.

 17 Graham MM, Muzi M, Spence AM, O’Sullivan F, Lewellen TK, Link JM, et 
al. The FDG lumped constant in normal human brain. J Nucl Med 2002; 
43:1157–1166.

 18 Cohen J. Statistical power analysis for the behavioral sciences. Second 
Edition. LAWRENCE ERLBAUM ASSOCIATES; 1988.

D
ow

nloaded from
 http://journals.lw

w
.com

/nuclearm
edicinecom

m
 by B

hD
M

f5eP
H

K
av1zE

oum
1tQ

fN
4a+

kJLhE
Z

gbsIH
o4X

M
i0hC

yw
C

X
1A

W
nY

Q
p/IlQ

rH
D

3i3D
0O

dR
yi7T

vS
F

l4C
f3V

C
4/O

A
V

pD
D

a8K
K

G
K

V
0Y

m
y+

78=
 on 10/26/2023


