
Vol.:(0123456789)1 3

Japanese Journal of Radiology (2020) 38:907–921
https://doi.org/10.1007/s11604-020-00998-2

INVITED REVIEW

Introduction to deep learning: minimum essence required to launch
a research

Tomohiro Wataya1  · Katsuyuki Nakanishi1 · Yuki Suzuki2 · Shoji Kido2 · Noriyuki Tomiyama3

Received: 11 March 2020 / Accepted: 2 June 2020 / Published online: 15 June 2020
© Japan Radiological Society 2020

Abstract
In the present article, we provide an overview on the basics of deep learning in terms of technical aspects and steps required
to launch a deep learning research. Deep learning is a branch of artificial intelligence, which has been attracting interest in
many domains. The essence of deep learning can be compared to teaching an elementaryschool student how to differenti‑
ate magnetic resonance images, and we first explain the concept using this analogy.Deep learning models are composed of
many layers including input, hidden, and output ones. Convolutional neural networks are suitable for image processing as
convolutional and pooling layers allow successfully performing extraction of image features. The process of conducting a
research work with deep learning can be divided into the nine following steps: computer preparation, software installation,
specifying the function, data collection, data edits, dataset creation, programming, program execution, and verification of
results. Concerning widespread expectations, deep learning cannot be applied to solve tasks other than those set in specifi‑
cation; moreover, it requires a large amount of data to train and has difficulties with recognizing unknown concepts. Deep
learning cannot be considered as a universal tool, and researchers should have thorough understanding of the features of
this technique.

Keywords  Deep learning · Convolutional neural network (CNN) · Artificial intelligence (AI) · Machine learning (ML) ·
Representation learning (RL)

Introduction

Artificial intelligence (AI) has been attracting greater atten‑
tion in recent years. Successful research works are reported
constantly in a variety of complex tasks, including image
classification, object detection, speech recognition, play‑
ing games [1], and drawing pictures [2]. Related research
in the medical field has been also progressing, including
such research questions as analyzing electrocardiograms

[3], detecting polyps from colonoscopy [4], and extracting
features from pathological images [5].

Radiological image analysis and interpretation are the
fundamental cognitive tasks in the field of radiology, which
historically have been difficult to resolve despite technical
advances in computer vision [6]. However, owing to the
advancement of deep learning and other AI techniques and
acceleration of computation using graphical processing units
(GPUs) [7], the number of reports on radiological image
analysis has increased dramatically. It is possible to mention
such examples as suppressing bone shadows from chest radi‑
ography [8–10] and subtracting vessels from chest computed
tomography (CT) images [11, 12]; several products have
already obtained U.S. Food and Drug Administration (FDA)
approval. In Japan, a product for detecting aneurysms based
on magnetic resonance (MR) angiography was approved in
2019 by the Pharmaceuticals and Medical Devices Agency
(PMDA) as the first application using deep learning [13, 14].

With the advancement of the AI technology, it becomes
difficult even for radiologists to understand the technolo‑
gies behind AI. People may express excessive expectations

 *	 Tomohiro Wataya
	 wataya‑osk@umin.ac.jp

1	 Department of Diagnostic and Interventional Radiology,
Osaka International Cancer Institute, 3‑1‑69 Otemae,
Chuo‑ku, Osaka 541‑8567, Japan

2	 Department of Artificial Intelligence Diagnostic Radiology,
Osaka University Graduate School of Medicine, 2‑2
Yamadaoka, Suita, Osaka 565‑0871, Japan

3	 Department of Radiology, Osaka University Graduate School
of Medicine, 2‑2 Yamadaoka, Suita, Osaka 565‑0871, Japan

http://orcid.org/0000-0002-1224-6601
http://crossmark.crossref.org/dialog/?doi=10.1007/s11604-020-00998-2&domain=pdf

908	 Japanese Journal of Radiology (2020) 38:907–921

1 3

concerning this technology, while others are worried to lose
their jobs due to this reason. These issues can be attributed
to the fact that there are a limited number of articles that
briefly summarize the key concepts of AI, including techni‑
cal aspects.

In the present article, we review the basics of AI, specifi‑
cally, focusing on the deep learning technology by defining
the key terms. We present our own intuitive explanation of
deep leaning and describe its basic concepts and discuss the
background for convolutional neural networks (CNNs). We
also suggest the concrete steps to launch a research work
dedicated to deep learning. In addition, we describe the tech‑
nical limitations associated with deep learning.

Definitions

In this section, we define the key terms of computer science.
This will be helpful to understand the relationship between
AI and deep learning.

Artificial intelligence (AI)

AI is a class of computer software capable of performing
tasks that require imitating human intelligence [6]. Although
the range of tasks corresponding to the category of AI is
rather comprehensive, it is often regarded to relatively com‑
plex tasks.

Machine learning (ML)

ML is a subfield of AI in which algorithms are trained to
perform tasks by learning patterns from the data in question
rather than by applying explicit programming [7].

In the conventional AI techniques, human experts statisti‑
cally or empirically extracted features from the considered
data and encoded them into algorithms. The AI software is
capable of processing inputs using a manually determined
scale and formulating required answers. Meanwhile, in ML,
it is necessary to program the methods to automatically ana‑
lyze the inputs and derive the answers instead of formulating
manual-based criteria.

Technical examples of ML include k-nearest neighbor
[15], support vector machine (SVM) [16], decision tree [17],
and the Naive Bayes algorithm [18].

Representation learning (RL)

RL is a subfield of ML. ML depends greatly on preprocess‑
ing pipelines and data transformations which result in a rep‑
resentation of the data, whereas RL does not [19]. However,
the RL software can learn representations of the data on its
own, which allows gradual improvement of the quality and

accuracy of the outputs through the training process. An arti‑
ficial neural network (ANN) [20] is a typical example of RL.

Artificial neural networks (ANNs), deep learning,
and convolutional neural networks (CNNs)

ANNs were inspired by the concept of human neural net‑
works. Virtual neurons line up to compose a unit denoted as
a layer, and combinations of layers and connections between
them constitute a network model. When the model employs
many layers, typically more than 20 [7], the technique is
called deep neural network (DNN) learning, or deep learn‑
ing. CNN is a branch of neural networks that employ the
convolution technique. It is commonly applied to computer
vision tasks.

An intuitive explanation of deep leaning
and its main concepts

To understand deep learning intuitively, let us consider a
friendly analogy.

Let us imagine that we need to teach an elementary
school student how to differentiate the T1-weighted image
(T1WI) and T2-weighted image (T2WI) slices of brain mag‑
netic resonance imaging (MRI). As the student is not aware
of the anatomy of the brain or the MRI technology in detail,
the explanations using anatomical or technical terms, such
as “Water is black on T1WI and white on T2WI”, would not
work, and therefore, it is necessary to change the strategy.

A new strategy is represented in Fig. 1a. We put two
boxes in front of the student. For convenience, we denote
them box 0 and 1, respectively. We expect the student to
put the T1WI slices into the box 0 and T2WI into the box 1.
Then, we pass one slice (step 1), noting “Put this image into
either of the boxes”. At first, the student does not understand
what he or she is being asked for, so he or she randomly
selects a box and puts the image into it (step 2). After this
selection, we check the provided answer (step 3) and tell
if the selection has been correct or not (step 4). By repeat‑
ing such trials over and over again, the student gradually
learns what box 0 and 1 images correspond to. However,
it does not mean that the student understands the physical
definition of the T1WI and T2WI or can specify the dif‑
ference between the T1WI and T2WI slices. This means
that to evaluate the validity and usefulness of the learned
concept, the student needs to undergo examinations using
new image data. In exams, we check the provided answer
after the student’s selection, but we do not expose the ideal
answer (step 4 is omitted). If there is a large difference in
the accuracy between the study (“training”) process and the
exam (“validation”) process, the student’s understanding is
considered as non-adjustable to new unseen images.

909Japanese Journal of Radiology (2020) 38:907–921	

1 3

Almost the same is true for deep learning (Fig. 1b). Deep
learning models are composed of calculating methods and
millions of or, sometimes, billions of parameters, mimicking
human brain neural networks. When we input an image into
a model (step 1), it generates its answer (step 2). However,
the output is not precisely the box number, but the possibil‑
ity of each box (“class”). The class with the highest possibil‑
ity is considered as the answer of the model. An appropriate
model is required to provide accurate and clear-cut answers.
Therefore, we introduce a “loss function” to quantify the extent
of difference between the model output and the ideal answer
denoted as “loss” (step 3). In the training process, the model
parameters are updated to reduce the loss (step 4). This update
process is referred to as “back propagation”. The model is
trained based on the same data many times, and the repeated
time is called “epoch”. Then, in the validation process, the
loss is calculated, but we do not update the model parameters
(step 4 is omitted). The ideal result is that in both training and
validation trials, the accuracy would increase monotonically,
and the loss would decrease. When the model is overfitted
with respect to the training data and cannot be adjusted to the
validation data, the difference of the loss between the train‑
ing and the validation gradually expands, which is denoted as
“overfitting”.

Main tasks for deep learning
and well‑known models

In this section, we introduce several deep learning tasks
related to image processing along with the well-known
models. The important aspect to be noted here is not how
well the models can perform in the task, but whether the
task inputs and outputs are suitable for deep learning.

Classification

In the classification task, the model receives an image and
predicts what is depicted in the image. For example, goals
for the classification tasks can be as follows: evaluating
a digit in a handwritten single digit image [21], classify‑
ing diffuse lung disease patterns [22], and estimating MRI
sequences [23].

Many deep learning models, specifically, CNN models,
have been proposed to resolve this task. Examples of the
well-known models are LeNet [21], AlexNet [24], visual
geometry group net (VGGNet) [25], and residual neural
network (ResNet) [26].

Fig. 1   Steps to teach a an elementary school student or b a deep learning model how to differentiate the T1WI and T2WI slices. The numbers in
the figure correspond to the step numbers in the text

910	 Japanese Journal of Radiology (2020) 38:907–921

1 3

Regression

In the regression task, the model predicts one value from an
image. For example, studies have been conducted on esti‑
mating the bone age from radiographs of fingers [27], and
estimating the risk of cardiovascular disease from fundus
images [28].

In the regression task, network models used in the clas‑
sification task can be adjusted by replacing the output data
format (output layer).

Object detection

In the classification task described above, the classification
model is not applicable when more than one objects exist
in one image and cannot specify the location of each object
in the image. In the object detection task, the positions of
objects are represented by rectangles (bounding boxes)
circumscribing the objects in the image. An example of
detecting ventricles from a T2WI slice (Fig. 2a) is shown
in Fig. 2b.

Various networks, such as regions with convolutional
neural networks (R-CNN) [29], fast R-CNN [30], single
shot multibox detector (SSD) [31], and you only look once
(YOLO) [32], have been proposed. These algorithms often
include the two major steps: extracting a large number of
rectangular candidate areas from the image, and classifying
what kind of objects which they are [33].

Segmentation

In the object detection task, locations of objects can be esti‑
mated; however, the shapes of the objects are not known.
The purpose of the segmentation task is to extract the areas
having the target structure presented in the image, if any.
Figure 2c provides an example of segmentation of ventricles
from a T2WI slice. Such networks as fully convolutional net‑
works (FCN) [34], SegNet [35], and U-Net [36] have been
proposed to solve this problem.

Super‑resolution

In this task, high-resolution images are obtained from
low-resolution images. Object contours in the magni‑
fied images are blurred with simple linear interpolation,
whereas super resolution keeps the sharpness of edges
[37]. CNN models, such as super-resolution using deep
convolutional networks (SRCNN) [38], can be used for
this purpose. In medical imaging, this technique is used
for various modalities, including chest CT [39] and mam‑
mogram [40].

Generating images

In recent years, generative adversarial networks (GANs)
have attracted great attention as an approach to generate
images. In GANs, a generator, which produces fake images
from randomly created noise, and a discriminator, which
is used to distinguish fake images from real one, are alter‑
nately trained, so that the generator can produce a larger
number of close to real images [41]. Various GAN-related
methods have been proposed [42], such as conditional
GAN (cGAN) [43] and cycleGAN [44].

Extracting features

Autoencoder is considered as a useful approach for
extracting features from images denoted as “dimensional‑
ity reduction”. This network is composed of encoder and
decoder. The encoder gradually compresses images and
finally loads them into a layer denoted as “code layer”,
which is composed of the smallest number of neurons. In
its turn, the decoder expands the data in the code layer,
restoring the input image. When both networks are trained
successfully, the data in the code layer can be used to rep‑
resent image features [45].

Fig. 2   Difference of outputs in
object detection and segmenta‑
tion tasks. In the example task
of detecting ventricles from a a
T2WI slice, b object detection
task networks are represented
by bounding boxes and c seg‑
mentation task networks corre‑
spond to ventricles. The outputs
are manually reproduced by the
author

911Japanese Journal of Radiology (2020) 38:907–921	

1 3

Components of deep learning models

Deep learning models are composed of many layers. The
first one is denoted as the “input layer”; the last one is
referred to as the “output layer”; and the others in the middle
are “hidden layer(s)”. In this section, we explain the function
of each layer in detail.

Input layer

This layer is the first layer of the network, which receives the
input data. When images are employed as the input data, the
input data are the matrices of values (Fig. 3). When color
images are used, the image is considered as the complex of
the three channels (red, green, and blue) and the input data
triple. Each artificial neuron in this layer receives only one
value from the input. This means that the input layer needs
the same number of neurons as the number of values.

Hidden layer

There are many kinds of hidden layers. In this section, we
introduce several common ones.

Affine (dense) layer

In the affine layer, artificial neurons are lined up in a row, so
we consider the concept of artificial neurons in more details
(Fig. 4).

Each neuron receives the input data from all neurons in
the previous layer. For each input from the previous layer
(outputs of the previous layer) x, the neuron has a weight w
and a bias b, and “xw + b” is calculated and summed up. An
“activation function” is used to obtain the output y from the
sum. The output is used as an input in the next layer. Activa‑
tion functions are the non-linear functions. Examples of the
well-known activation functions are sigmoid (Fig. 5a), tanh

(Fig. 5b), and rectified linear unit (ReLU) [47] (Fig. 5c). In
this layer, weights and biases are the trainable parameters
and are updated in the training phase.

Due to the process described above, the affine layer pro‑
cesses the images just as an assembly of the scattered data,
namely, the output does not consider the location datum
of each pixel nor combinations among a neighborhood of
points [48]. Moreover, even when an object in an image
moves by a single pixel, since all processing neurons shift,
the output can vary significantly.

Convolutional layer

Convolution has been considered in the conventional imag‑
ing technology before the development of deep leaning, such
as to blur images or to extract contours (Fig. 6).

In convolutional layers, small grids of weights referred
to as “kernels” are applied to process the input. The kernels
refer to the same shape of an area in the inputs, constituting
the sum of the pixelwise multiplications of the inputs and
the weights.

An example of applying a 3 × 3 kernel to a 5 × 5 input is
provided in Fig. 7. First, we apply the kernel to the left top
of the input. The sum of the nine multiplications (as shown
in the figure) is written on the left top of the output (Fig. 7b).
Then, we move the kernel to the right (in this case by one
pixel) to calculate the next sum (Fig. 7c). By repeating this
process, we fill in the output matrix (Fig. 7d). Although the
output becomes smaller than the input in this case, there are
the methods proposed to keep the data size, such as filling
the peripheral data by zero.

In the actual convolutional layer, more than one kernels
are often used, so that the number of output matrices is the
same as that of the kernels. In this layer, trainable param‑
eters denote the weights of the kernels and, if any, biases.

Fig. 3   Pixel values in a monochrome image. Images are composed of
pixels, and each pixel has its own value. The image is a handwritten
number from MNIST database [46]

Fig. 4   Process in an artificial neuron in the affine layer. An artificial
neuron receives the data from the previous layer and outputs a value
according to the parameters (weights and biases)

912	 Japanese Journal of Radiology (2020) 38:907–921

1 3

An activation function, commonly the ReLU function, is
similar to affine layer.

By introducing the convolutional layers, the models are
considered able to extract local features of the image.

Pooling layer

In the pooling layer, a process of reducing the image size,
while maintaining the characteristics of the image, is per‑
formed. An example of a process in a pooling layer for the
case of focusing on a 2 × 2 area is presented in Fig. 8. When
we focus on the left top of the input area, the maximum
value is written to the left top of the output data (Fig. 8b).

Fig. 5   Typical activation functions in neural networks. Each graph shows the shape of a sigmoid, b tanh, and c ReLU functions, respectively

Fig. 6   Examples of the convolution process in the conventional imag‑
ing technology. The output varies widely depending on the kernel,
and various kernels have been developed. The input image is a hand‑
written number from MNIST database [46]. Processed with a pro‑
gram proposed in [49] (kernel parameters are manually changed by
the author)

Fig. 7   An example of the convolution process. a Input data, a kernel
(weights), and an output matrix (currently empty). b The kernel is
adapted to the left top of the input, and the left top of the output is
filled. c The kernel is moved, filling another part of the output. d By
repeating these steps, the output matrix is fully filled

913Japanese Journal of Radiology (2020) 38:907–921	

1 3

Next, we move two pixels to the right and record the maxi‑
mum value (Fig. 8c). This is repeated to fill all output data
(Fig. 8d). Although this example corresponds to the “max
pooling layer” that transmits the maximum value of the
focusing area to the next layer, there are other types of layers
to consider, such as an “average pooling layer” that transmits
the average.

There are no trainable parameters defined in this layer.
The output is considered to represent the condensed features
of the image. Furthermore, the whole network can be less
sensitive to the slight differences in locations of objects in
the image [48] and robust against data noise, if any.

In actual CNNs, convolutional and pooling layers can be
used alternately, so that the feature extraction and condensa‑
tion are performed.

Output layer

This is the final part of the network. In this layer, the calcula‑
tion results of the previous hidden layer are combined into
the final network output. This layer is often defined as the
affine or the convolutional layer; however, the number of
neurons and the suitable activation function are determined
according to the task. Common structures of the output layer
for particular tasks are listed in Table 1.

Loss function

Strictly speaking, the loss function is not included in the
neural network. It quantifies the difference between the
model output and the perfect answer. Well-known loss func‑
tions include binary cross entropy, categorical cross entropy,
and mean squared loss. Similar as in the output layer, the
selection of a suitable loss function is limited depending on
the particular task (Table 1). For complex tasks, it may be
necessary to define own loss function.

Optimizer

The optimizer is an algorithm employed in a training
process to find the optimal combination of the trainable
parameters that minimizes the loss. Figure 9 shows an
example of the stochastic gradient descent (SGD) [51].
The curve in the figure is a pattern diagram of the relation‑
ship between the parameter w and loss L when an image is
input to the model. Let us assume w is w0. The gradient g0
of the L at the point w0 is calculated using the differential
of w. Herein, we introduce a constant denoted as “learning
rate” η and “w0—ηg0” is the revised parameter w1. The

Fig. 8   An example of the max pooling process. a Input data and an
output matrix (currently empty). b We focus on the 2 × 2 area of the
left top of the input and fill the left top of the output by the largest
value. c We move two pixels to the right, filling another part of the
output. d By repeating these steps, the output matrix is fully filled

Table 1   Examples of the output
layers and loss functions for
common tasks

This table is created based on description in [50]

Task Classification task Regression task

With two classes With more than two classes

Type of the layer Affine layer Affine layer Affine layer
Number of neurons One The same as the number of the classes One
Activation function Sigmoid function Softmax function No activation function
Loss function Binary cross entropy Categorical cross entropy Mean squared loss

914	 Japanese Journal of Radiology (2020) 38:907–921

1 3

shape of the curve varies according to the image. There‑
fore, we gradually modify w by exchanging the input.

The process includes the differential of a composite
function and this optimization is performed following the
inverse order starting from the output layer to input layer.
Therefore, the optimization is called backpropagation. The
SGD and several other algorithms have been proposed,
such as momentum [51], RMSProp [52], AdaGrad [53],
and Adam [54].

We demonstrated a method to update the parameters per
image. However, “mini-batch training” is a commonly used
method. In this technique, some (usually from 10 to 100)
images are randomly selected and the gradients for each
input are averaged. This is efficient, because the loss over
a mini-batch is an estimate of the gradient over the entire
training data [55].

An example of CNN

An example of CNN definition in Keras [56] is represented
in Fig. 10a. A network diagram for the same network is pro‑
vided in Fig. 10b. This example is provided for a classifi‑
cation task corresponding to processing 32 × 32 px mono‑
chrome images into ten classes and is based on LeNet [21]
(partially modified by the author). Here, the input layer
receives 32 × 32 data pixel by pixel. In this case, the explicit
definition of the input layer is omitted. Instead, the shape of
the input data is specified in the first layer. Thereafter, the
data pass through the convolutional layer (Conv2D) and max
pooling one (MaxPooling2D) alternately. Furthermore, the
data pass through several affine layers (Dense) and then are
aggregated gradually into ten neurons in the output layer. In
this example, the activation functions are defined as ReLU
in the convolutional layers and tanh in the affine layer. As

Fig. 9   A pattern diagram of updating parameter. The parameter w is
updated based on the differential of the loss L. The symbols corre‑
spond to the text

Fig. 10   An example of LeNet
definition. a A program
example is implemented in
Keras. The convolutional layer
convolution (Conv2D) and max
pooling (MaxPooling2D) layers
are used alternately in the first
half of the model. The latter
half of the model is composed
of affine (Dense) layers. Finally,
a loss function and an opti‑
mizer are defined. b A network
diagram of the network defined
in a. Some of the neurons and
data connections are omitted in
the figure

915Japanese Journal of Radiology (2020) 38:907–921	

1 3

this is a classification task with more than two classes, the
softmax function is used in the output layer and categorical
cross entropy is used as the loss function. In this case, we
selected Adam as the optimizer.

Steps to launch research with deep learning

In this section, we explain the specific steps which we pro‑
pose for the deep learning research works.

Computer preparation

In theory, most computers are suitable for the deep learn‑
ing research regardless of the operating system (OS) and
the computational power. However, the computers with at
least one GPU (Fig. 11) are preferable. Central processing
units (CPUs), which are presented in all computers, are
available for general purposes. However, although GPUs
can solve only simple calculations, they can do much faster
than CPUs, and this feature is adequate for deep learning
researches. GPUs are not always necessary, but they enable
fast experiments and studies.

However, we must understand that some GPUs, espe‑
cially old types, are unavailable for the studies. In addition,
particular GPUs are not compatible with some OSes as the
required GPU drivers are not provided.

It should be noted that various online cloud systems,
such as Google Colaboratory [58], Microsoft Azure [59],
and Neural Network Console [60] (listed in an alphabeti‑
cal order), are available. These systems provide affordable
workspaces with GPUs and installed software; therefore,
depending on budget and research objectives, these systems
can be considered as suitable options.

Software installation

An example of a necessary software list formulated when
using TensorFlow [61] and Keras [56] on Windows is pro‑
vided in Table 2. The list may be different depending on the
characteristics of GPUs, and the GPU maker is supposed to
be NVIDIA in this example.

More than one versions are usually available for some
software exemplars; however, due to the compatibility issue
between various software programs and versions, the com‑
bination of the most recent versions may not be applicable.
It is necessary to review the information on the homepages
of software providers.

Specifying the function

In this step, it is required to clarify the problem to be solved.
This step designates the format of the input and output data.
In addition, specifically, when the research is focused on
image processing, it is necessary to define the image size,
monochrome or color image, and the image format, such
as portable network graphics (PNG), tag image file format
(TIFF), or digital imaging and communications in medicine
(DICOM).

Data collection

Similarly as in other medical research works, it is necessary
to search target cases and collect data. When required, it is
possible to create the answer (teacher) data.

Data edits

It is necessary to edit the collected data according to the
provided specifications. For example, according to the spec‑
ification, DICOM format images have to be converted to
PNG images, or color images have to be converted to mono‑
chrome images. To unify the image size, the image may be
enlarged/reduced or trimmed as appropriate.

Fig. 11   A photograph of a graphic processing unit (GPU). The image
is reprinted from [57] with permission by NVIDIA

Table 2   Example of the software installation list

Jupyter Notebook, keras, HDF5 for python, matplotlib, Pillow, pan‑
das, SciPy, Spyder, scikit-learn, Cython, OpenCV, pydicom
The list is created based on description in [77]. References are [56,
62–76]. Some software is not always necessary

Without GPUs With GPUs

CUDA
cuDNN
Visual Studio

Anaconda Anaconda
TensorFlow TensorFlow (GPU version)

916	 Japanese Journal of Radiology (2020) 38:907–921

1 3

Dataset creation

It is required to link the input and output of the collected
data. For example, in a classification task, it is possible cre‑
ate a comma-separated values (CSV) file to define combi‑
nations of a file name and a correct class; otherwise, it is
possible to divide the images into folders according to the
correct classes.

As described above, in addition to the training data used
for updating the model parameters, the validation data are
required to detect overfitting. Although it is possible to
divide them randomly at the program execution stage, the
training and validation datasets can be created separately.
Among the collected data, 80% is often assigned to the train‑
ing data and 20% to the validation; however, this value is not
precisely defined and can be selected as appropriate accord‑
ing to the purpose of the study.

Programming

To implement deep learning, it is necessary to create a cor‑
responding program. It seems rather difficult for people who
are not used to program professionally; however, examples
of programs corresponding to the common tasks are avail‑
able in the related technical literature or in the Internet. It is
possible to copy and paste the examples provided in open
code and change several particular parameters (image size,
the number of classes, etc.). In such way, it is possible to
create simple programs.

In recent years, environments providing graphical user
interface (GUI), such as DIGITS [78] (Fig. 12) and Neural
Network Console [60] (Fig. 13) (listed in an alphabetical
order), have been developed, and therefore, programming is
not necessarily essential.

Program execution

To obtain required results, it is necessary to execute the
implemented program and train the model. The required
computational time may vary greatly depending on the con‑
tents of a task, the image size, and the performance of GPUs.
A learning curve can be monitored (Fig. 14). When the train‑
ing is performed successfully, the accuracy of both training
and validation gradually improves, and the corresponding
loss decreases (Fig. 14a). However, when the gap between
training and validation expands, this effect is referred to as
overfitting (Fig. 14b). The learning can be terminated when
overfitting has occurred; or when the learning has converged,
and the accuracy has not improved.

Verification of results

In this step, it is necessary to check whether the learning
is successful. Herein, we present some technical clues to
improve or verify the results.

Techniques for scarce medical images

Collecting a large number of medical images with accurate
labels can be a daunting task. Therefore, we present some
techniques that can be used to work with scarce data.

In the technique called “data augmentation” [79], image
variants can be created by rotating, enlarging, or reduc‑
ing the original data. The variants appear the same at first
glance. However, they can make big differences in the AI
process. Therefore, it is expected that a few original images
allow effective learning.

Another technique is “transfer learning” [80]. We pretrain
a model using a large number of non-medical images or for‑
mulate a model using a set of successful parameters of win‑
ners in the popular ML competitions, such as the ImageNet
challenge. Such models are proficient at processing general
images, and by fine-tuning them with the target medical
data, they are expected to mark good grades.

Techniques for preventing overfitting

Overfitting occurs when there are not enough training data or
when the model contains large number of parameters [51].

Since the weights tend to be larger in case of overfit‑
ting, forcibly keeping the values small, which is called
“weight decay”, was proposed as a key to overfitting. This
is achieved by adding the L2 norm (square root of the sum
of the squares) of the parameters to the loss. Thus, reducing
the loss by backpropagation can result in small parameters,
since the norm works as a penalty for big parameters [51].

Another technique is “dropout”. During training, cer‑
tain percentage (“dropout rate”) of neurons are randomly
selected for each mini-batch, and those neurons drop out of
training. Through this process, the model becomes a virtu‑
ally “thinned” network and can be robust against overfitting
[81].

The final technique is “batch normalization”. Batch nor‑
malization layers are often inserted to normalize the intra-
mini-batch data those flow into the activation functions.
Although this technique was first aimed to accelerate the
training, it also works as a powerful aid for overfitting [55].

917Japanese Journal of Radiology (2020) 38:907–921	

1 3

Tuning hyperparameters

The models contain millions of parameters. Some of these
parameters are non-trainable and cannot be modified auto‑
matically. Such parameters are epoch, mini-batch size, learn‑
ing rate, dropout rate, parameter initialization values, and
selection of the loss function or optimizer. By tuning these
hyperparameters, we can seek better sets of parameters even
with the same models and data.

Visualization of reasons for judgement

The meanings of each parameter or process in the model are
still unclear. However, gradient-weighted class activation
mapping (Grad CAM) was proposed as a practical method
[82]. Additionally, layer-wise relevance propagation (LRP)

was proposed [83]. The aforementioned methods aimed to
determine which image properties which the model was
focused on. In particular cases, the model considered the
trivial image artifacts (shading of the background or fonts
and positions of characters appearing in the image, if any) to
formulate an answer. It is necessary to determine the capa‑
bility of the model in providing relevant answers, based on
a reasonable rationale.

Limitations of deep learning

Although it is considered that AI, including deep learning, is
expected to substitute several radiologists’ work processes in
the future, the technique itself has many limitations.

Fig. 12   A screenshot of DIGITS. An example of GUI application for deep learning. The image is reprinted from [57] with permission by
NVIDIA

918	 Japanese Journal of Radiology (2020) 38:907–921

1 3

First, it cannot solve tasks other than those set in speci‑
fication. A network implemented for the classification task
cannot be applied to the regression problem, and an image
of the size other than defined in the specification cannot be
input or output. Radiologists usually diagnose images based
on the knowledge from various sources, such as scientific
papers, books, their own experience, study sessions, etc.
However, deep learning cannot be implemented based on
all these resources, as the corresponding data formats are
not unified and therefore, at present, deep learning is able to
process only the data limited at some extent.

Second, the task of training networks requires a large
amount of the relevant case data. It is often rather difficult
to collect the exact data without bias between facilities and
imaging devices. In addition, when a new disease concept
appears, and a corresponding novel technique for the disease
is being developed, data collection can become a serious
barrier, specifically, for rare diseases.

Furthermore, in deep learning, there is a difficulty associ‑
ated with recognition of unknown elements. The model for‑
cibly processes the data as long as the input format matches
the specification, even when the input data are not relevant

Fig. 13   A screenshot of Neural Network Console. An example of GUI application used for deep learning. The screenshot is created by the
author with permission by Sony Network Communications

Fig. 14   Pattern diagrams of
a learning curve. a A pattern
of a successful study. There is
little difference between the
training and validation curves.
b A pattern of overfitting. The
difference between the curves
gradually expands

919Japanese Journal of Radiology (2020) 38:907–921	

1 3

for the considered task, thereby providing meaningless
answers.

Conclusion

In the present article, we reviewed the technical basics of
deep learning using our own intuitive analogy, explained
the structure of models succinctly and proposed the steps to
initiate a deep learning research.

In recent years, many brilliant achievements in deep
learning have been reported; however, they cannot be con‑
sidered as universal tools. Considering that AI will become
more prevalent in daily clinical practice in the near future,
we note that medical doctors need to have clear under‑
standing on the advantages and disadvantages of these
approaches.

It should be noted that at present, in the radiology depart‑
ments, most of the data used for daily work are digitized,
and the applicability to information technology (IT) research
studies is better compared with other departments. Radiolo‑
gists can access and collect radiological images and can cre‑
ate the own teacher data; therefore, it is important to take the
initiative to actively engage in AI-related research.

Acknowledgements  The authors would like to thank Enago (www.
enago​.jp) for English language review. The authors would like to
acknowledge NVIDIA for providing Figs. 11 and 12. The authors are
grateful to Soichiro Tateishi, a radiological technologist in Osaka Inter‑
national Cancer Institute, for providing sample MR images in Figs. 1
and 2.

Compliance with ethical standards 

Conflict of interest  Yuki Suzuki and Shoji Kido receive research fund‑
ing from Fujifilm Co., Ltd., but all the authors declare no conflicts of
interest associated with this manuscript.

References

	 1.	 Silver D, Huang A, Maddison CJ, Guez A, Sifre L, van den
Driessche G, et al. Mastering the game of Go with deep neural
networks and tree search. Nature. 2016. https​://doi.org/10.1038/
natur​e1696​1.

	 2.	 The Next Rembrandt [Internet]. [place unknown]: The Next Rem‑
brandt. https​://www.nextr​embra​ndt.com/. Accessed 8 Mar 2020.

	 3.	 Attia ZI, Noseworthy PA, Lopez-Jimenez F, Asirvatham SJ, Desh‑
mukh AJ, Gersh BJ, et al. An artificial intelligence-enabled ECG
algorithm for the identification of patients with atrial fibrillation
during sinus rhythm: a retrospective analysis of outcome predic‑
tion. Lancet. 2019. https​://doi.org/10.1016/S0140​-6736(19)31721​
-0.

	 4.	 Mori Y, Kudo SE, Misawa M, Saito Y, Ikematsu H, Hotta K, et al.
Real-time use of artificial intelligence in identification of diminu‑
tive polyps during colonoscopy: a prospective study. Ann Intern
Med. 2018. https​://doi.org/10.7326/m18-0249.

	 5.	 Yamamoto Y, Tsuzuki T, Akatsuka J, Ueki M, Morikawa H,
Numata Y, et al. Automated acquisition of explainable knowl‑
edge from unannotated histopathology images. Nat Commun.
2019. https​://doi.org/10.1038/s4146​7-019-13647​-8.

	 6.	 Chartrand G, Cheng PM, Vorontsov E, Drozdzal M, Turcotte S,
Pal CJ, et al. Deep learning: a primer for radiologists. Radio‑
graphics. 2017. https​://doi.org/10.1148/rg.20171​70077​.

	 7.	 Erickson BJ, Korfiatis P, Akkus Z, Kline TL. Machine learn‑
ing for medical imaging. Radiographics. 2017. https​://doi.
org/10.1148/rg.20171​60130​.

	 8.	 Schalekamp S, van Ginneken B, Karssemeijer N, Schaefer-
Prokop CM. Chest radiography: new technological develop‑
ments and their applications. Semin Respir Crit Care Med.
2014. https​://doi.org/10.1055/s-0033-13634​47.

	 9.	 Schalekamp S, Van Ginneken B, Koedam E, Snoeren MM,
Tiehuis AM, Wittenberg R, et al. Computer-aided detection
improves detection of pulmonary nodules in chest radiographs
beyond the support by bone-suppressed images. Radiology.
2014. https​://doi.org/10.1148/radio​l.14131​315.

	10.	 ClearRead Xray [Internet]. Miamisburg: Riverain Technologies.
https​://www.river​ainte​ch.com/clear​read-xray/. Accessed 8 Mar
2020.

	11.	 Lo SB, Freedman MT, Gillis LB, White CS, Mun SK. JOUR‑
NAL CLUB: computer-aided detection of lung nodules on CT
with a computerized pulmonary vessel suppressed function. Am
J Roentgenol. 2018. https​://doi.org/10.2214/AJR.17.18718​.

	12.	 ClearRead CT [Internet]. Miamisburg: Riverain Technologies.
https​://www.river​ainte​ch.com/clear​read-ct/. Accessed 8 Mar
2020.

	13.	 Ueda D, Yamamoto A, Nishimori M, Shimono T, Doishita S,
Shimazaki A, et al. Deep learning for MR angiography: auto‑
mated detection of cerebral aneurysms. Radiology. 2019. https​://
doi.org/10.1148/radio​l.20181​80901​.

	14.	 LPIXEL Inc. [Internet]. Tokyo; LPIXEL Inc.. https​://lpixe​l.net/
en/. Accessed 8 Mar 2020.

	15.	 Cover T, Hart P. Nearest neighbor pattern classification. IEEE
Trans Inf Theory. 1967. https​://doi.org/10.1109/tit.1967.10539​64.

	16.	 Cortes C, Vapnik V. Support-vector networks. Mach Learn. 1995.
https​://doi.org/10.1007/bf009​94018​.

	17.	 Quinlan JR. Induction of decision trees. Mach Learn. 1986. https​
://doi.org/10.1007/bf001​16251​.

	18.	 Ben-Bassat M, Klove KL, Weil MH. Sensitivity analysis in bayes‑
ian classification models: multiplicative deviations. IEEE Trans
Pattern Anal Mach Intell. 1980. https​://doi.org/10.1109/tpami​
.1980.47670​15.

	19.	 Bengio Y, Courville A, Vincent P. Representation learning: a
review and new perspectives. IEEE Trans Pattern Anal Mach
Intell. 2013;35(8):1798–828.

	20.	 Hornik K, Stinchcombe M, White H. Multilayer feedforward net‑
works are universal approximators. Neural Netw. 1989. https​://
doi.org/10.1016/0893-6080(89)90020​-8.

	21.	 Lecun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning
applied to document recognition. Proc IEEE. 1998. https​://doi.
org/10.1109/5.72679​1.

	22.	 Murakami K, Kido S, Hashimoto N, Hirano Y, Wakasugi K, Inai
K. Computer-aided classification of diffuse lung disease patterns
using convolutional neural network. Int J Comput Assist Radiol
Surg. 2017;12(1):138–9.

	23.	 Noguchi T, Higa D, Asada T, Kawata Y, Machitori A, Shida Y,
et al. Artificial intelligence using neural network architecture for
radiology (AINNAR): classification of MR imaging sequences.
Jpn J Radiol. 2018;36(12):691–7.

	24.	 Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification
with deep convolutional neural networks. In: NIPS’12: Proceed‑
ings of the 25th international conference on neural information
processing systems, vol. 1. 2012. pp. 1097–105.

http://www.enago.jp
http://www.enago.jp
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961
https://www.nextrembrandt.com/
https://doi.org/10.1016/S0140-6736(19)31721-0
https://doi.org/10.1016/S0140-6736(19)31721-0
https://doi.org/10.7326/m18-0249
https://doi.org/10.1038/s41467-019-13647-8
https://doi.org/10.1148/rg.2017170077
https://doi.org/10.1148/rg.2017160130
https://doi.org/10.1148/rg.2017160130
https://doi.org/10.1055/s-0033-1363447
https://doi.org/10.1148/radiol.14131315
https://www.riveraintech.com/clearread-xray/
https://doi.org/10.2214/AJR.17.18718
https://www.riveraintech.com/clearread-ct/
https://doi.org/10.1148/radiol.2018180901
https://doi.org/10.1148/radiol.2018180901
https://lpixel.net/en/
https://lpixel.net/en/
https://doi.org/10.1109/tit.1967.1053964
https://doi.org/10.1007/bf00994018
https://doi.org/10.1007/bf00116251
https://doi.org/10.1007/bf00116251
https://doi.org/10.1109/tpami.1980.4767015
https://doi.org/10.1109/tpami.1980.4767015
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791

920	 Japanese Journal of Radiology (2020) 38:907–921

1 3

	25.	 Simonyan K, Zisserman A. Very deep convolutional net‑
works for large-scale image recognition. arXiv preprint
arXiv:14091556. 2014.

	26.	 He K, Zhang X, Ren S, Sun J. Deep residual learning for image
recognition. In: Proceedings of the IEEE conference on com‑
puter vision and pattern recognition. 2016:770–8.

	27.	 Lee JH, Kim KG. Applying deep learning in medical images:
the case of bone age estimation. Healthc Inform Res. 2018. https​
://doi.org/10.4258/hir.2018.24.1.86.

	28.	 Poplin R, Varadarajan AV, Blumer K, Liu Y, McConnell MV,
Corrado GS, et al. Prediction of cardiovascular risk factors from
retinal fundus photographs via deep learning. Nat Biomed Eng.
2018. https​://doi.org/10.1038/s4155​1-018-0195-0.

	29.	 Girshick R, Donahue J, Darrell T, Malik J. Rich feature hierar‑
chies for accurate object detection and semantic segmentation.
In: Proceedings of the IEEE conference on computer vision and
pattern recognition. 2014:580–7.

	30.	 Girshick R. Fast r-cnn. In: Proceedings of the IEEE international
conference on computer vision. 2015:1440–8.

	31.	 Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu C-Y, et al.
SSD: Single shot multibox detector. In: Leibe B, Matas J, Sebe
N, Welling M, editors. Computer vision – ECCV 2016. ECCV
2016. Lecture notes in computer science, vol. 9905. Cham:
Springer; 2016. pp. 21–37.

	32.	 Redmon J, Divvala S, Girshick R, Farhadi A. You only look
once: Unified, real-time object detection. In: Proceedings of the
IEEE conference on computer vision and pattern recognition.
2016:779–88.

	33.	 Teramoto A. Dei-pu Ra-ningu [Deep Learning]. In: Fujita H
(2019). Iryou AI to Dei-pu Ra-ningu Shiri-zu: Iyou Gazou Dei-
pu Ra-ning Nyuumon [Medical AI and Deep Learning Series:
Introduction to Medical Image Deep Learning]. 1st ed. Tokyo:
Ohmsha, pp. 26–40. Japanese.

	34.	 Long J, Shelhamer E, Darrell T. Fully convolutional networks
for semantic segmentation. In: Proceedings of the IEEE confer‑
ence on computer vision and pattern recognition. 2015:3431–40.

	35.	 Badrinarayanan V, Kendall A, Cipolla R. Segnet: a deep convo‑
lutional encoder-decoder architecture for image segmentation.
IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–95.

	36.	 Ronneberger O, Fischer P, Brox T. U-net: Convolutional net‑
works for biomedical image segmentation. In: International
conference on medical image computing and computer-assisted
intervention. 2015:234–41.

	37.	 Higaki T, Nakamura Y, Tatsugami F, Nakaura T, Awai K.
Improvement of image quality at CT and MRI using deep learn‑
ing. Jpn J Radiol. 2019;37(1):73–80.

	38.	 Dong C, Loy CC, He K, Tang X. Image super-resolution using
deep convolutional networks. IEEE Trans Pattern Anal Mach
Intell. 2015;38(2):295–307.

	39.	 Umehara K, Ota J, Ishida T. Application of super-resolution
convolutional neural network for enhancing image resolution
in chest CT. J Digit Imaging. 2018;31(4):441–50.

	40.	 Umehara K, Ota J, Ishida T. Super-resolution imaging of mam‑
mograms based on the super-resolution convolutional neural
network. Open J Med Imaging. 2017;7(4):180–95.

	41.	 Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley
D, Ozair S, et al. Generative adversarial nets. In: NIPS’14: Pro‑
ceedings of the 27th international conference on neural informa‑
tion processing systems, vol. 2. 2014. pp. 2672–80.

	42.	 Nakata N. Recent technical development of artificial intelligence
for diagnostic medical imaging. Jpn J Radiol. 2019;37(2):103–8.

	43.	 Mirza M, Osindero S. Conditional generative adversarial nets.
arXiv preprint arXiv:14111784. 2014.

	44.	 Zhu J-Y, Park T, Isola P, Efros AA. Unpaired image-to-image
translation using cycle-consistent adversarial networks. In:

Proceedings of the IEEE international conference on computer
vision. 2017:2223–32.

	45.	 Hinton GE, Salakhutdinov RR. Reducing the dimensionality of
data with neural networks. Science. 2006;313(5786):504–7.

	46.	 LeCun Y, Cortes C, Burges CJ. The MNIST database of hand‑
written digits [Internet]. New York; [publisher unknown]. http://
yann.lecun​.com/exdb/mnist​. Accessed 8 Mar 2020.

	47.	 Glorot X, Bordes A, Bengio Y. Deep sparse rectifier neural
networks. In: Proceedings of the fourteenth international confer‑
ence on artificial intelligence and statistics. 2011:315–23.

	48.	 Yasaka K, Akai H, Kunimatsu A, Kiryu S, Abe O. Deep learning
with convolutional neural network in radiology. Jpn J Radiol.
2018;36(4):257–72.

	49.	 Hashimoto M. Seeing is Believing, Considering is Under‑
standing, Predicting is Discovering. Lecture presented at: The
78th Annual Meeting of Japan Radiological Society. 2019 Apr
11–14. Lecture material [xlsx file on the Internet]. http://rad.
med.keio.ac.jp/wp/wp-content/uploads/2019/04/DeepLearn‑
ing_Excel_ver1.0.xlsx.Japanese. Accessed 8 Mar 2020.

	50.	 Kobayashi Y. Deep Learning nyuumon: nyu-raru nettowa-
ku sekkei no kiso [Introduction to deep learning: basics for
designing neural networks] [video on the Internet]. Tokyo;
Sony Network Communications Inc.; 2019 Feb 26 [reviewed
2020 Mar 8]; [18 min., 37 sec]. https://www.youtube.com/
watch?v=O3qm6qZooP0,Japanese. Accessed 8 Mar 2020

	51.	 Saito K. Gakusyuu ni Kansuru Tekunikku [Techniques for
Learning]. In: Saito K (2016). Zero kara tsukuru Deep Learn‑
ing: Python de manabu dei-pura-ningu no riron to zissou [Build‑
ing Deep Learning from Scratch: The Theory and Implemen‑
tation of Deep Learning in Python]. 1st ed. Tokyo: O’Reilly
Japan, pp. 165–203. Japanese.

	52.	 Tieleman T, Hinton G. Lecture 6.5-rmsprop: divide the gradi‑
ent by a running average of its recent magnitude. COURSERA
Neural Netw Mach Learn. 2012;4:26–31.

	53.	 Duchi J, Hazan E, Singer Y. Adaptive subgradient methods for
online learning and stochastic optimization. J Mach Learn Res.
2011;12:2121–59.

	54.	 Kingma DP, Ba J. Adam: a method for stochastic optimization.
arXiv preprint arXiv:14126980. 2014.

	55.	 Ioffe S, Szegedy C. Batch normalization: accelerating deep net‑
work training by reducing internal covariate shift. arXiv pre‑
print arXiv:150203167. 2015.

	56.	 Keras: The Python Deep Learning library [Internet]. [place
unknown: publisher unknown]. https​://keras​.io/. Accessed 8
Mar 2020.

	57.	 Multimedia [Internet]. Santa Clara: NVIDIA Corporation; c
2020. https​://nvidi​anews​.nvidi​a.com/multi​media​. Accessed 8
Mar 2020.

	58.	 Google Colaboratory toha [About Google Colaboratory] [Inter‑
net]. [place unknown: publisher unknown]. https​://colab​.resea​
rch.googl​e.com/noteb​ooks/intro​.ipynb​.Japan​ese. Accessed 8
Mar 2020.

	59.	 Microsoft Azure. Invent with purpose [Internet]. Seattle: Micro‑
soft; c 2020. https​://azure​.micro​soft.com/en-us/. Accessed 8
Mar 2020.

	60.	 Neural Network Console [Internet]. Tokyo; Sony Network Com‑
munications Inc. https​://dl.sony.com/. Accessed 8 Mar 2020.

	61.	 Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C,
et al. Tensorflow: Large-scale machine learning on heterogene‑
ous distributed systems. arXiv preprint arXiv:160304467. 2016.

	62.	 CUDA Toolkit 10.2 Download [Internet]. Santa Clara: NVIDIA
Corporation; c 2020. https​://devel​oper.nvidi​a.com/cuda-downl​
oads. Accessed 8 Mar 2020.

	63.	 NVIDIA cuDNN [Internet]. Santa Clara: NVIDIA Corpora‑
tion; c 2020. https​://devel​oper.nvidi​a.com/cudnn​. Accessed 8
Mar 2020.

https://doi.org/10.4258/hir.2018.24.1.86
https://doi.org/10.4258/hir.2018.24.1.86
https://doi.org/10.1038/s41551-018-0195-0
http://yann.lecun.com/exdb/mnist
http://yann.lecun.com/exdb/mnist
https://keras.io/
https://nvidianews.nvidia.com/multimedia
https://colab.research.google.com/notebooks/intro.ipynb.Japanese
https://colab.research.google.com/notebooks/intro.ipynb.Japanese
https://azure.microsoft.com/en-us/
https://dl.sony.com/
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cudnn

921Japanese Journal of Radiology (2020) 38:907–921	

1 3

	64.	 Visual Studio Best-in-class tools for any developer [Internet].
Seattle: Microsoft; c 2020. https​://visua​lstud​io.micro​soft.com/.
Accessed 8 Mar 2020.

	65.	 Anaconda | The World’s Most Popular Data Science Platform
[Internet]. Austin: Anaconda, Inc.; c 2020. https​://www.anaco​
nda.com/. Accessed 8 Mar 2020.

	66.	 Project Jupyter | Home [Internet]. [place unknown]: Project Jupy‑
ter; c 2020 [updated 2020 Jan 28; cited 2020 Mar 8]. https​://jupyt​
er.org/. Accessed 8 Mar 2020.

	67.	 Collette A and contributors. HDF5 for Python [Internet]. [place
unknown: publisher unknown]; c 2014. https​://docs.h5py.org/en/
stabl​e/. Accessed 8 Mar 2020.

	68.	 Matplotlib: Visualization with Python [Internet]. [placce
unknown]: The Matplotlib development team; c 2002–2018
[updated 2020 Mar 4; cited 2020 Mar 8]. https​://matpl​otlib​.org/.
Accessed 8 Mar 2020.

	69.	 Clark A and contributors . Pillow [Internet]. [place unknown: pub‑
lisher unknown]; c 1995–2020. https​://pillo​w.readt​hedoc​s.io/en/
stabl​e/. Accessed 8 Mar 2020.

	70.	 pandas [Internet]. [place unknown: publisher unknown]. https​://
panda​s.pydat​a.org/. Accessed 8 Mar 2020.

	71.	 SciPy.org [Internet]. [placce unknown]: TSciPy developers; c
2020. https​://www.scipy​.org/. Accessed 8 Mar 2020.

	72.	 SPYDER [Internet]. [placce unknown]: The Spyder Website Con‑
tributors; c 2018. https​://www.spyde​r-ide.org/. Accessed 8 Mar
2020.

	73.	 Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B,
Grisel O, et al. Scikit-learn: machine learning in Python. J Mach
Learn Res. 2011;12:2825–30.

	74.	 Cython: C-Extensions for Python [Internet]. [place unknown:
publisher unknown]. https​://cytho​n.org/. Accessed 8 Mar 2020.

	75.	 OpenCV [Internet]. [placce unknown]: OpenCV team; c 2020.
https​://openc​v.org/. Accessed 8 Mar 2020.

	76.	 Pydicom website. https​://pydic​om.githu​b.io/. Accessed Feb 2020.

	77.	 Hara T. Kankyou Kouchiku [Environment Construction]. In:
Fujita H, Hara T (2019). Iryou AI to Dei-pu Ra-ningu Shiri-zu:
Hyoujun Iyou Gazou no tame no Dei-pu Ra-ning Jissen Hen
[Medical AI and Deep Learning Series: Standard Deep Learning
for Medical Images–Practice ver.-]. 1st ed. Tokyo: Ohmsha, pp.
1–26. Japanese.

	78.	 NVIDIA DIGITS [Internet]. Santa Clara: NVIDIA Corporation; c
2020. https​://devel​oper.nvidi​a.com/digit​s. Accessed 8 Mar 2020.

	79.	 Roth HR, Lu L, Liu J, Yao J, Seff A, Cherry K, et al. Improving
computer-aided detection using convolutional neural networks and
random view aggregation. IEEE Trans Med Imaging. 2016. https​
://doi.org/10.1109/tmi.2015.24829​20.

	80.	 Shin HC, Roth HR, Gao M, Lu L, Xu Z, Nogues I, et al. Deep
convolutional neural networks for computer-aided detection:
CNN architectures, dataset characteristics and transfer learn‑
ing. IEEE Trans Med Imaging. 2016. https​://doi.org/10.1109/
tmi.2016.25281​62.

	81.	 Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov
R. Dropout: a simple way to prevent neural networks from overfit‑
ting. J Mach Learn Res. 2014;15(1):1929–58.

	82.	 Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra
D. Grad-cam: Visual explanations from deep networks via gradi‑
ent-based localization. In: Proceedings of the IEEE international
conference on computer vision. 2017:618–26.

	83.	 Binder A, Montavon G, Lapuschkin S, Müller K-R, Samek W.
Layer-wise relevance propagation for neural networks with local
renormalization layers. In: International Conference on Artificial
Neural Networks. 2016:63–71.

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://visualstudio.microsoft.com/
https://www.anaconda.com/
https://www.anaconda.com/
https://jupyter.org/
https://jupyter.org/
http://docs.h5py.org/en/stable/
http://docs.h5py.org/en/stable/
https://matplotlib.org/
https://pillow.readthedocs.io/en/stable/
https://pillow.readthedocs.io/en/stable/
https://pandas.pydata.org/
https://pandas.pydata.org/
https://www.scipy.org/
https://www.spyder-ide.org/
https://cython.org/
https://opencv.org/
https://pydicom.github.io/
https://developer.nvidia.com/digits
https://doi.org/10.1109/tmi.2015.2482920
https://doi.org/10.1109/tmi.2015.2482920
https://doi.org/10.1109/tmi.2016.2528162
https://doi.org/10.1109/tmi.2016.2528162

	Introduction to deep learning: minimum essence required to launch a research
	Abstract
	Introduction
	Definitions
	Artificial intelligence (AI)
	Machine learning (ML)
	Representation learning (RL)
	Artificial neural networks (ANNs), deep learning, and convolutional neural networks (CNNs)

	An intuitive explanation of deep leaning and its main concepts
	Main tasks for deep learning and well-known models
	Classification
	Regression
	Object detection
	Segmentation
	Super-resolution
	Generating images
	Extracting features

	Components of deep learning models
	Input layer
	Hidden layer
	Affine (dense) layer
	Convolutional layer
	Pooling layer

	Output layer
	Loss function
	Optimizer
	An example of CNN

	Steps to launch research with deep learning
	Computer preparation
	Software installation
	Specifying the function
	Data collection
	Data edits
	Dataset creation
	Programming
	Program execution
	Verification of results
	Techniques for scarce medical images
	Techniques for preventing overfitting
	Tuning hyperparameters
	Visualization of reasons for judgement

	Limitations of deep learning
	Conclusion
	Acknowledgements
	References

