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Abstract
In the present article, we provide an overview on the basics of deep learning in terms of technical aspects and steps required 
to launch a deep learning research. Deep learning is a branch of artificial intelligence, which has been attracting interest in 
many domains. The essence of deep learning can be compared to teaching an elementaryschool student how to differenti‑
ate magnetic resonance images, and we first explain the concept using this analogy.Deep learning models are composed of 
many layers including input, hidden, and output ones. Convolutional neural networks are suitable for image processing as 
convolutional and pooling layers allow successfully performing extraction of image features. The process of conducting a 
research work with deep learning can be divided into the nine following steps: computer preparation, software installation, 
specifying the function, data collection, data edits, dataset creation, programming, program execution, and verification of 
results. Concerning widespread expectations, deep learning cannot be applied to solve tasks other than those set in specifi‑
cation; moreover, it requires a large amount of data to train and has difficulties with recognizing unknown concepts. Deep 
learning cannot be considered as a universal tool, and researchers should have thorough understanding of the features of 
this technique.

Keywords  Deep learning · Convolutional neural network (CNN) · Artificial intelligence (AI) · Machine learning (ML) · 
Representation learning (RL)

Introduction

Artificial intelligence (AI) has been attracting greater atten‑
tion in recent years. Successful research works are reported 
constantly in a variety of complex tasks, including image 
classification, object detection, speech recognition, play‑
ing games [1], and drawing pictures [2]. Related research 
in the medical field has been also progressing, including 
such research questions as analyzing electrocardiograms 

[3], detecting polyps from colonoscopy [4], and extracting 
features from pathological images [5].

Radiological image analysis and interpretation are the 
fundamental cognitive tasks in the field of radiology, which 
historically have been difficult to resolve despite technical 
advances in computer vision [6]. However, owing to the 
advancement of deep learning and other AI techniques and 
acceleration of computation using graphical processing units 
(GPUs) [7], the number of reports on radiological image 
analysis has increased dramatically. It is possible to mention 
such examples as suppressing bone shadows from chest radi‑
ography [8–10] and subtracting vessels from chest computed 
tomography (CT) images [11, 12]; several products have 
already obtained U.S. Food and Drug Administration (FDA) 
approval. In Japan, a product for detecting aneurysms based 
on magnetic resonance (MR) angiography was approved in 
2019 by the Pharmaceuticals and Medical Devices Agency 
(PMDA) as the first application using deep learning [13, 14].

With the advancement of the AI technology, it becomes 
difficult even for radiologists to understand the technolo‑
gies behind AI. People may express excessive expectations 
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concerning this technology, while others are worried to lose 
their jobs due to this reason. These issues can be attributed 
to the fact that there are a limited number of articles that 
briefly summarize the key concepts of AI, including techni‑
cal aspects.

In the present article, we review the basics of AI, specifi‑
cally, focusing on the deep learning technology by defining 
the key terms. We present our own intuitive explanation of 
deep leaning and describe its basic concepts and discuss the 
background for convolutional neural networks (CNNs). We 
also suggest the concrete steps to launch a research work 
dedicated to deep learning. In addition, we describe the tech‑
nical limitations associated with deep learning.

Definitions

In this section, we define the key terms of computer science. 
This will be helpful to understand the relationship between 
AI and deep learning.

Artificial intelligence (AI)

AI is a class of computer software capable of performing 
tasks that require imitating human intelligence [6]. Although 
the range of tasks corresponding to the category of AI is 
rather comprehensive, it is often regarded to relatively com‑
plex tasks.

Machine learning (ML)

ML is a subfield of AI in which algorithms are trained to 
perform tasks by learning patterns from the data in question 
rather than by applying explicit programming [7].

In the conventional AI techniques, human experts statisti‑
cally or empirically extracted features from the considered 
data and encoded them into algorithms. The AI software is 
capable of processing inputs using a manually determined 
scale and formulating required answers. Meanwhile, in ML, 
it is necessary to program the methods to automatically ana‑
lyze the inputs and derive the answers instead of formulating 
manual-based criteria.

Technical examples of ML include k-nearest neighbor 
[15], support vector machine (SVM) [16], decision tree [17], 
and the Naive Bayes algorithm [18].

Representation learning (RL)

RL is a subfield of ML. ML depends greatly on preprocess‑
ing pipelines and data transformations which result in a rep‑
resentation of the data, whereas RL does not [19]. However, 
the RL software can learn representations of the data on its 
own, which allows gradual improvement of the quality and 

accuracy of the outputs through the training process. An arti‑
ficial neural network (ANN) [20] is a typical example of RL.

Artificial neural networks (ANNs), deep learning, 
and convolutional neural networks (CNNs)

ANNs were inspired by the concept of human neural net‑
works. Virtual neurons line up to compose a unit denoted as 
a layer, and combinations of layers and connections between 
them constitute a network model. When the model employs 
many layers, typically more than 20 [7], the technique is 
called deep neural network (DNN) learning, or deep learn‑
ing. CNN is a branch of neural networks that employ the 
convolution technique. It is commonly applied to computer 
vision tasks.

An intuitive explanation of deep leaning 
and its main concepts

To understand deep learning intuitively, let us consider a 
friendly analogy.

Let us imagine that we need to teach an elementary 
school student how to differentiate the T1-weighted image 
(T1WI) and T2-weighted image (T2WI) slices of brain mag‑
netic resonance imaging (MRI). As the student is not aware 
of the anatomy of the brain or the MRI technology in detail, 
the explanations using anatomical or technical terms, such 
as “Water is black on T1WI and white on T2WI”, would not 
work, and therefore, it is necessary to change the strategy.

A new strategy is represented in Fig. 1a. We put two 
boxes in front of the student. For convenience, we denote 
them box 0 and 1, respectively. We expect the student to 
put the T1WI slices into the box 0 and T2WI into the box 1. 
Then, we pass one slice (step 1), noting “Put this image into 
either of the boxes”. At first, the student does not understand 
what he or she is being asked for, so he or she randomly 
selects a box and puts the image into it (step 2). After this 
selection, we check the provided answer (step 3) and tell 
if the selection has been correct or not (step 4). By repeat‑
ing such trials over and over again, the student gradually 
learns what box 0 and 1 images correspond to. However, 
it does not mean that the student understands the physical 
definition of the T1WI and T2WI or can specify the dif‑
ference between the T1WI and T2WI slices. This means 
that to evaluate the validity and usefulness of the learned 
concept, the student needs to undergo examinations using 
new image data. In exams, we check the provided answer 
after the student’s selection, but we do not expose the ideal 
answer (step 4 is omitted). If there is a large difference in 
the accuracy between the study (“training”) process and the 
exam (“validation”) process, the student’s understanding is 
considered as non-adjustable to new unseen images.
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Almost the same is true for deep learning (Fig. 1b). Deep 
learning models are composed of calculating methods and 
millions of or, sometimes, billions of parameters, mimicking 
human brain neural networks. When we input an image into 
a model (step 1), it generates its answer (step 2). However, 
the output is not precisely the box number, but the possibil‑
ity of each box (“class”). The class with the highest possibil‑
ity is considered as the answer of the model. An appropriate 
model is required to provide accurate and clear-cut answers. 
Therefore, we introduce a “loss function” to quantify the extent 
of difference between the model output and the ideal answer 
denoted as “loss” (step 3). In the training process, the model 
parameters are updated to reduce the loss (step 4). This update 
process is referred to as “back propagation”. The model is 
trained based on the same data many times, and the repeated 
time is called “epoch”. Then, in the validation process, the 
loss is calculated, but we do not update the model parameters 
(step 4 is omitted). The ideal result is that in both training and 
validation trials, the accuracy would increase monotonically, 
and the loss would decrease. When the model is overfitted 
with respect to the training data and cannot be adjusted to the 
validation data, the difference of the loss between the train‑
ing and the validation gradually expands, which is denoted as 
“overfitting”.

Main tasks for deep learning 
and well‑known models

In this section, we introduce several deep learning tasks 
related to image processing along with the well-known 
models. The important aspect to be noted here is not how 
well the models can perform in the task, but whether the 
task inputs and outputs are suitable for deep learning.

Classification

In the classification task, the model receives an image and 
predicts what is depicted in the image. For example, goals 
for the classification tasks can be as follows: evaluating 
a digit in a handwritten single digit image [21], classify‑
ing diffuse lung disease patterns [22], and estimating MRI 
sequences [23].

Many deep learning models, specifically, CNN models, 
have been proposed to resolve this task. Examples of the 
well-known models are LeNet [21], AlexNet [24], visual 
geometry group net (VGGNet) [25], and residual neural 
network (ResNet) [26].

Fig. 1   Steps to teach a an elementary school student or b a deep learning model how to differentiate the T1WI and T2WI slices. The numbers in 
the figure correspond to the step numbers in the text
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Regression

In the regression task, the model predicts one value from an 
image. For example, studies have been conducted on esti‑
mating the bone age from radiographs of fingers [27], and 
estimating the risk of cardiovascular disease from fundus 
images [28].

In the regression task, network models used in the clas‑
sification task can be adjusted by replacing the output data 
format (output layer).

Object detection

In the classification task described above, the classification 
model is not applicable when more than one objects exist 
in one image and cannot specify the location of each object 
in the image. In the object detection task, the positions of 
objects are represented by rectangles (bounding boxes) 
circumscribing the objects in the image. An example of 
detecting ventricles from a T2WI slice (Fig. 2a) is shown 
in Fig. 2b.

Various networks, such as regions with convolutional 
neural networks (R-CNN) [29], fast R-CNN [30], single 
shot multibox detector (SSD) [31], and you only look once 
(YOLO) [32], have been proposed. These algorithms often 
include the two major steps: extracting a large number of 
rectangular candidate areas from the image, and classifying 
what kind of objects which they are [33].

Segmentation

In the object detection task, locations of objects can be esti‑
mated; however, the shapes of the objects are not known. 
The purpose of the segmentation task is to extract the areas 
having the target structure presented in the image, if any. 
Figure 2c provides an example of segmentation of ventricles 
from a T2WI slice. Such networks as fully convolutional net‑
works (FCN) [34], SegNet [35], and U-Net [36] have been 
proposed to solve this problem.

Super‑resolution

In this task, high-resolution images are obtained from 
low-resolution images. Object contours in the magni‑
fied images are blurred with simple linear interpolation, 
whereas super resolution keeps the sharpness of edges 
[37]. CNN models, such as super-resolution using deep 
convolutional networks (SRCNN) [38], can be used for 
this purpose. In medical imaging, this technique is used 
for various modalities, including chest CT [39] and mam‑
mogram [40].

Generating images

In recent years, generative adversarial networks (GANs) 
have attracted great attention as an approach to generate 
images. In GANs, a generator, which produces fake images 
from randomly created noise, and a discriminator, which 
is used to distinguish fake images from real one, are alter‑
nately trained, so that the generator can produce a larger 
number of close to real images [41]. Various GAN-related 
methods have been proposed [42], such as conditional 
GAN (cGAN) [43] and cycleGAN [44].

Extracting features

Autoencoder is considered as a useful approach for 
extracting features from images denoted as “dimensional‑
ity reduction”. This network is composed of encoder and 
decoder. The encoder gradually compresses images and 
finally loads them into a layer denoted as “code layer”, 
which is composed of the smallest number of neurons. In 
its turn, the decoder expands the data in the code layer, 
restoring the input image. When both networks are trained 
successfully, the data in the code layer can be used to rep‑
resent image features [45].

Fig. 2   Difference of outputs in 
object detection and segmenta‑
tion tasks. In the example task 
of detecting ventricles from a a 
T2WI slice, b object detection 
task networks are represented 
by bounding boxes and c seg‑
mentation task networks corre‑
spond to ventricles. The outputs 
are manually reproduced by the 
author
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Components of deep learning models

Deep learning models are composed of many layers. The 
first one is denoted as the “input layer”; the last one is 
referred to as the “output layer”; and the others in the middle 
are “hidden layer(s)”. In this section, we explain the function 
of each layer in detail.

Input layer

This layer is the first layer of the network, which receives the 
input data. When images are employed as the input data, the 
input data are the matrices of values (Fig. 3). When color 
images are used, the image is considered as the complex of 
the three channels (red, green, and blue) and the input data 
triple. Each artificial neuron in this layer receives only one 
value from the input. This means that the input layer needs 
the same number of neurons as the number of values.

Hidden layer

There are many kinds of hidden layers. In this section, we 
introduce several common ones.

Affine (dense) layer

In the affine layer, artificial neurons are lined up in a row, so 
we consider the concept of artificial neurons in more details 
(Fig. 4).

Each neuron receives the input data from all neurons in 
the previous layer. For each input from the previous layer 
(outputs of the previous layer) x, the neuron has a weight w 
and a bias b, and “xw + b” is calculated and summed up. An 
“activation function” is used to obtain the output y from the 
sum. The output is used as an input in the next layer. Activa‑
tion functions are the non-linear functions. Examples of the 
well-known activation functions are sigmoid (Fig. 5a), tanh 

(Fig. 5b), and rectified linear unit (ReLU) [47] (Fig. 5c). In 
this layer, weights and biases are the trainable parameters 
and are updated in the training phase.

Due to the process described above, the affine layer pro‑
cesses the images just as an assembly of the scattered data, 
namely, the output does not consider the location datum 
of each pixel nor combinations among a neighborhood of 
points [48]. Moreover, even when an object in an image 
moves by a single pixel, since all processing neurons shift, 
the output can vary significantly.

Convolutional layer

Convolution has been considered in the conventional imag‑
ing technology before the development of deep leaning, such 
as to blur images or to extract contours (Fig. 6).

In convolutional layers, small grids of weights referred 
to as “kernels” are applied to process the input. The kernels 
refer to the same shape of an area in the inputs, constituting 
the sum of the pixelwise multiplications of the inputs and 
the weights.

An example of applying a 3 × 3 kernel to a 5 × 5 input is 
provided in Fig. 7. First, we apply the kernel to the left top 
of the input. The sum of the nine multiplications (as shown 
in the figure) is written on the left top of the output (Fig. 7b). 
Then, we move the kernel to the right (in this case by one 
pixel) to calculate the next sum (Fig. 7c). By repeating this 
process, we fill in the output matrix (Fig. 7d). Although the 
output becomes smaller than the input in this case, there are 
the methods proposed to keep the data size, such as filling 
the peripheral data by zero.

In the actual convolutional layer, more than one kernels 
are often used, so that the number of output matrices is the 
same as that of the kernels. In this layer, trainable param‑
eters denote the weights of the kernels and, if any, biases. 

Fig. 3   Pixel values in a monochrome image. Images are composed of 
pixels, and each pixel has its own value. The image is a handwritten 
number from MNIST database [46]

Fig. 4   Process in an artificial neuron in the affine layer. An artificial 
neuron receives the data from the previous layer and outputs a value 
according to the parameters (weights and biases)
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An activation function, commonly the ReLU function, is 
similar to affine layer.

By introducing the convolutional layers, the models are 
considered able to extract local features of the image.

Pooling layer

In the pooling layer, a process of reducing the image size, 
while maintaining the characteristics of the image, is per‑
formed. An example of a process in a pooling layer for the 
case of focusing on a 2 × 2 area is presented in Fig. 8. When 
we focus on the left top of the input area, the maximum 
value is written to the left top of the output data (Fig. 8b). 

Fig. 5   Typical activation functions in neural networks. Each graph shows the shape of a sigmoid, b tanh, and c ReLU functions, respectively

Fig. 6   Examples of the convolution process in the conventional imag‑
ing technology. The output varies widely depending on the kernel, 
and various kernels have been developed. The input image is a hand‑
written number from MNIST database [46]. Processed with a pro‑
gram proposed in [49] (kernel parameters are manually changed by 
the author)

Fig. 7   An example of the convolution process. a Input data, a kernel 
(weights), and an output matrix (currently empty). b The kernel is 
adapted to the left top of the input, and the left top of the output is 
filled. c The kernel is moved, filling another part of the output. d By 
repeating these steps, the output matrix is fully filled
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Next, we move two pixels to the right and record the maxi‑
mum value (Fig. 8c). This is repeated to fill all output data 
(Fig. 8d). Although this example corresponds to the “max 
pooling layer” that transmits the maximum value of the 
focusing area to the next layer, there are other types of layers 
to consider, such as an “average pooling layer” that transmits 
the average.

There are no trainable parameters defined in this layer. 
The output is considered to represent the condensed features 
of the image. Furthermore, the whole network can be less 
sensitive to the slight differences in locations of objects in 
the image [48] and robust against data noise, if any.

In actual CNNs, convolutional and pooling layers can be 
used alternately, so that the feature extraction and condensa‑
tion are performed.

Output layer

This is the final part of the network. In this layer, the calcula‑
tion results of the previous hidden layer are combined into 
the final network output. This layer is often defined as the 
affine or the convolutional layer; however, the number of 
neurons and the suitable activation function are determined 
according to the task. Common structures of the output layer 
for particular tasks are listed in Table 1.

Loss function

Strictly speaking, the loss function is not included in the 
neural network. It quantifies the difference between the 
model output and the perfect answer. Well-known loss func‑
tions include binary cross entropy, categorical cross entropy, 
and mean squared loss. Similar as in the output layer, the 
selection of a suitable loss function is limited depending on 
the particular task (Table 1). For complex tasks, it may be 
necessary to define own loss function.

Optimizer

The optimizer is an algorithm employed in a training 
process to find the optimal combination of the trainable 
parameters that minimizes the loss. Figure 9 shows an 
example of the stochastic gradient descent (SGD) [51]. 
The curve in the figure is a pattern diagram of the relation‑
ship between the parameter w and loss L when an image is 
input to the model. Let us assume w is w0. The gradient g0 
of the L at the point w0 is calculated using the differential 
of w. Herein, we introduce a constant denoted as “learning 
rate” η and “w0—ηg0” is the revised parameter w1. The 

Fig. 8   An example of the max pooling process. a Input data and an 
output matrix (currently empty). b We focus on the 2 × 2 area of the 
left top of the input and fill the left top of the output by the largest 
value. c We move two pixels to the right, filling another part of the 
output. d By repeating these steps, the output matrix is fully filled

Table 1   Examples of the output 
layers and loss functions for 
common tasks

This table is created based on description in [50]

Task Classification task Regression task

With two classes With more than two classes

Type of the layer Affine layer Affine layer Affine layer
Number of neurons One The same as the number of the classes One
Activation function Sigmoid function Softmax function No activation function
Loss function Binary cross entropy Categorical cross entropy Mean squared loss
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shape of the curve varies according to the image. There‑
fore, we gradually modify w by exchanging the input.

The process includes the differential of a composite 
function and this optimization is performed following the 
inverse order starting from the output layer to input layer. 
Therefore, the optimization is called backpropagation. The 
SGD and several other algorithms have been proposed, 
such as momentum [51], RMSProp [52], AdaGrad [53], 
and Adam [54].

We demonstrated a method to update the parameters per 
image. However, “mini-batch training” is a commonly used 
method. In this technique, some (usually from 10 to 100) 
images are randomly selected and the gradients for each 
input are averaged. This is efficient, because the loss over 
a mini-batch is an estimate of the gradient over the entire 
training data [55].

An example of CNN

An example of CNN definition in Keras [56] is represented 
in Fig. 10a. A network diagram for the same network is pro‑
vided in Fig. 10b. This example is provided for a classifi‑
cation task corresponding to processing 32 × 32 px mono‑
chrome images into ten classes and is based on LeNet [21] 
(partially modified by the author). Here, the input layer 
receives 32 × 32 data pixel by pixel. In this case, the explicit 
definition of the input layer is omitted. Instead, the shape of 
the input data is specified in the first layer. Thereafter, the 
data pass through the convolutional layer (Conv2D) and max 
pooling one (MaxPooling2D) alternately. Furthermore, the 
data pass through several affine layers (Dense) and then are 
aggregated gradually into ten neurons in the output layer. In 
this example, the activation functions are defined as ReLU 
in the convolutional layers and tanh in the affine layer. As 

Fig. 9   A pattern diagram of updating parameter. The parameter w is 
updated based on the differential of the loss L. The symbols corre‑
spond to the text

Fig. 10   An example of LeNet 
definition. a A program 
example is implemented in 
Keras. The convolutional layer 
convolution (Conv2D) and max 
pooling (MaxPooling2D) layers 
are used alternately in the first 
half of the model. The latter 
half of the model is composed 
of affine (Dense) layers. Finally, 
a loss function and an opti‑
mizer are defined. b A network 
diagram of the network defined 
in a. Some of the neurons and 
data connections are omitted in 
the figure



915Japanese Journal of Radiology (2020) 38:907–921	

1 3

this is a classification task with more than two classes, the 
softmax function is used in the output layer and categorical 
cross entropy is used as the loss function. In this case, we 
selected Adam as the optimizer.

Steps to launch research with deep learning

In this section, we explain the specific steps which we pro‑
pose for the deep learning research works.

Computer preparation

In theory, most computers are suitable for the deep learn‑
ing research regardless of the operating system (OS) and 
the computational power. However, the computers with at 
least one GPU (Fig. 11) are preferable. Central processing 
units (CPUs), which are presented in all computers, are 
available for general purposes. However, although GPUs 
can solve only simple calculations, they can do much faster 
than CPUs, and this feature is adequate for deep learning 
researches. GPUs are not always necessary, but they enable 
fast experiments and studies.

However, we must understand that some GPUs, espe‑
cially old types, are unavailable for the studies. In addition, 
particular GPUs are not compatible with some OSes as the 
required GPU drivers are not provided.

It should be noted that various online cloud systems, 
such as Google Colaboratory [58], Microsoft Azure [59], 
and Neural Network Console [60] (listed in an alphabeti‑
cal order), are available. These systems provide affordable 
workspaces with GPUs and installed software; therefore, 
depending on budget and research objectives, these systems 
can be considered as suitable options.

Software installation

An example of a necessary software list formulated when 
using TensorFlow [61] and Keras [56] on Windows is pro‑
vided in Table 2. The list may be different depending on the 
characteristics of GPUs, and the GPU maker is supposed to 
be NVIDIA in this example.

More than one versions are usually available for some 
software exemplars; however, due to the compatibility issue 
between various software programs and versions, the com‑
bination of the most recent versions may not be applicable. 
It is necessary to review the information on the homepages 
of software providers.

Specifying the function

In this step, it is required to clarify the problem to be solved. 
This step designates the format of the input and output data. 
In addition, specifically, when the research is focused on 
image processing, it is necessary to define the image size, 
monochrome or color image, and the image format, such 
as portable network graphics (PNG), tag image file format 
(TIFF), or digital imaging and communications in medicine 
(DICOM).

Data collection

Similarly as in other medical research works, it is necessary 
to search target cases and collect data. When required, it is 
possible to create the answer (teacher) data.

Data edits

It is necessary to edit the collected data according to the 
provided specifications. For example, according to the spec‑
ification, DICOM format images have to be converted to 
PNG images, or color images have to be converted to mono‑
chrome images. To unify the image size, the image may be 
enlarged/reduced or trimmed as appropriate.

Fig. 11   A photograph of a graphic processing unit (GPU). The image 
is reprinted from [57] with permission by NVIDIA

Table 2   Example of the software installation list

Jupyter Notebook, keras, HDF5 for python, matplotlib, Pillow, pan‑
das, SciPy, Spyder, scikit-learn, Cython, OpenCV, pydicom 
The list is created based on description in [77]. References are [56, 
62–76]. Some software is not always necessary

Without GPUs With GPUs

CUDA
cuDNN
Visual Studio

Anaconda Anaconda
TensorFlow TensorFlow (GPU version)
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Dataset creation

It is required to link the input and output of the collected 
data. For example, in a classification task, it is possible cre‑
ate a comma-separated values (CSV) file to define combi‑
nations of a file name and a correct class; otherwise, it is 
possible to divide the images into folders according to the 
correct classes.

As described above, in addition to the training data used 
for updating the model parameters, the validation data are 
required to detect overfitting. Although it is possible to 
divide them randomly at the program execution stage, the 
training and validation datasets can be created separately. 
Among the collected data, 80% is often assigned to the train‑
ing data and 20% to the validation; however, this value is not 
precisely defined and can be selected as appropriate accord‑
ing to the purpose of the study.

Programming

To implement deep learning, it is necessary to create a cor‑
responding program. It seems rather difficult for people who 
are not used to program professionally; however, examples 
of programs corresponding to the common tasks are avail‑
able in the related technical literature or in the Internet. It is 
possible to copy and paste the examples provided in open 
code and change several particular parameters (image size, 
the number of classes, etc.). In such way, it is possible to 
create simple programs.

In recent years, environments providing graphical user 
interface (GUI), such as DIGITS [78] (Fig. 12) and Neural 
Network Console [60] (Fig. 13) (listed in an alphabetical 
order), have been developed, and therefore, programming is 
not necessarily essential.

Program execution

To obtain required results, it is necessary to execute the 
implemented program and train the model. The required 
computational time may vary greatly depending on the con‑
tents of a task, the image size, and the performance of GPUs. 
A learning curve can be monitored (Fig. 14). When the train‑
ing is performed successfully, the accuracy of both training 
and validation gradually improves, and the corresponding 
loss decreases (Fig. 14a). However, when the gap between 
training and validation expands, this effect is referred to as 
overfitting (Fig. 14b). The learning can be terminated when 
overfitting has occurred; or when the learning has converged, 
and the accuracy has not improved.

Verification of results

In this step, it is necessary to check whether the learning 
is successful. Herein, we present some technical clues to 
improve or verify the results.

Techniques for scarce medical images

Collecting a large number of medical images with accurate 
labels can be a daunting task. Therefore, we present some 
techniques that can be used to work with scarce data.

In the technique called “data augmentation” [79], image 
variants can be created by rotating, enlarging, or reduc‑
ing the original data. The variants appear the same at first 
glance. However, they can make big differences in the AI 
process. Therefore, it is expected that a few original images 
allow effective learning.

Another technique is “transfer learning” [80]. We pretrain 
a model using a large number of non-medical images or for‑
mulate a model using a set of successful parameters of win‑
ners in the popular ML competitions, such as the ImageNet 
challenge. Such models are proficient at processing general 
images, and by fine-tuning them with the target medical 
data, they are expected to mark good grades.

Techniques for preventing overfitting

Overfitting occurs when there are not enough training data or 
when the model contains large number of parameters [51].

Since the weights tend to be larger in case of overfit‑
ting, forcibly keeping the values small, which is called 
“weight decay”, was proposed as a key to overfitting. This 
is achieved by adding the L2 norm (square root of the sum 
of the squares) of the parameters to the loss. Thus, reducing 
the loss by backpropagation can result in small parameters, 
since the norm works as a penalty for big parameters [51].

Another technique is “dropout”. During training, cer‑
tain percentage (“dropout rate”) of neurons are randomly 
selected for each mini-batch, and those neurons drop out of 
training. Through this process, the model becomes a virtu‑
ally “thinned” network and can be robust against overfitting 
[81].

The final technique is “batch normalization”. Batch nor‑
malization layers are often inserted to normalize the intra-
mini-batch data those flow into the activation functions. 
Although this technique was first aimed to accelerate the 
training, it also works as a powerful aid for overfitting [55].
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Tuning hyperparameters

The models contain millions of parameters. Some of these 
parameters are non-trainable and cannot be modified auto‑
matically. Such parameters are epoch, mini-batch size, learn‑
ing rate, dropout rate, parameter initialization values, and 
selection of the loss function or optimizer. By tuning these 
hyperparameters, we can seek better sets of parameters even 
with the same models and data.

Visualization of reasons for judgement

The meanings of each parameter or process in the model are 
still unclear. However, gradient-weighted class activation 
mapping (Grad CAM) was proposed as a practical method 
[82]. Additionally, layer-wise relevance propagation (LRP) 

was proposed [83]. The aforementioned methods aimed to 
determine which image properties which the model was 
focused on. In particular cases, the model considered the 
trivial image artifacts (shading of the background or fonts 
and positions of characters appearing in the image, if any) to 
formulate an answer. It is necessary to determine the capa‑
bility of the model in providing relevant answers, based on 
a reasonable rationale.

Limitations of deep learning

Although it is considered that AI, including deep learning, is 
expected to substitute several radiologists’ work processes in 
the future, the technique itself has many limitations.

Fig. 12   A screenshot of DIGITS. An example of GUI application for deep learning. The image is reprinted from [57] with permission by 
NVIDIA
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First, it cannot solve tasks other than those set in speci‑
fication. A network implemented for the classification task 
cannot be applied to the regression problem, and an image 
of the size other than defined in the specification cannot be 
input or output. Radiologists usually diagnose images based 
on the knowledge from various sources, such as scientific 
papers, books, their own experience, study sessions, etc. 
However, deep learning cannot be implemented based on 
all these resources, as the corresponding data formats are 
not unified and therefore, at present, deep learning is able to 
process only the data limited at some extent.

Second, the task of training networks requires a large 
amount of the relevant case data. It is often rather difficult 
to collect the exact data without bias between facilities and 
imaging devices. In addition, when a new disease concept 
appears, and a corresponding novel technique for the disease 
is being developed, data collection can become a serious 
barrier, specifically, for rare diseases.

Furthermore, in deep learning, there is a difficulty associ‑
ated with recognition of unknown elements. The model for‑
cibly processes the data as long as the input format matches 
the specification, even when the input data are not relevant 

Fig. 13   A screenshot of Neural Network Console. An example of GUI application used for deep learning. The screenshot is created by the 
author with permission by Sony Network Communications

Fig. 14   Pattern diagrams of 
a learning curve. a A pattern 
of a successful study. There is 
little difference between the 
training and validation curves. 
b A pattern of overfitting. The 
difference between the curves 
gradually expands
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for the considered task, thereby providing meaningless 
answers.

Conclusion

In the present article, we reviewed the technical basics of 
deep learning using our own intuitive analogy, explained 
the structure of models succinctly and proposed the steps to 
initiate a deep learning research.

In recent years, many brilliant achievements in deep 
learning have been reported; however, they cannot be con‑
sidered as universal tools. Considering that AI will become 
more prevalent in daily clinical practice in the near future, 
we note that medical doctors need to have clear under‑
standing on the advantages and disadvantages of these 
approaches.

It should be noted that at present, in the radiology depart‑
ments, most of the data used for daily work are digitized, 
and the applicability to information technology (IT) research 
studies is better compared with other departments. Radiolo‑
gists can access and collect radiological images and can cre‑
ate the own teacher data; therefore, it is important to take the 
initiative to actively engage in AI-related research.
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