第2種ME技術実力検定試験(第22回-午前-問題36)

図に示す論理回路の出力2として表中で正しいものはどれか.

入力	X	0	0	1	1
	Y	0	1	0	1
出力 2	1)	1	0	0	0
	2)	1	1	0	0
	3)	0	0	1	1
	4)	0	0	0	1
	5)	0	1	1	1

3年 医用工学実習に用いる オシロスコープ

測定可能周波数 0 Hz ~ 20 MHz (普及型 7万円)

交流波形の知識は2年後期の医用工学概論の講義でも 重要だが、知らない人、不得意な人が多いので エクセルを使って交流波形に対する苦手意識をなくそう。

リサージュ図形(波形) Lissajous' curve 互いに直角方向に振動する二つの単振動(正弦波) を合成して得られる曲線図形。 1855年にフランスの科学者J.A. Lissajousが考案。

 $x = sin (2\pi a t)$ y = sin (2\pi b t + \delta)

a:X軸正弦波の周波数

- b:Y軸正弦波の周波数
- t:時間

δ: 位相差

オシロスコープをX-Y入力モードに設定して、 各入力に異なる交流信号を入力すると リサージュ波形を観測することができる。

オシロスコープ上のリサージュ曲線は、 周波数の測定に用いられる。

基準波と被測定波を横軸、縦軸に入力すると、 上下に描かれた山の数と、左右に描かれた山の数が、 基準波と被測定波の周波数比となって現れる。 これを基に周波数を測定することが出来る。 この周波数測定法を、比較法という。

また、お互いの信号の位相が異なると、曲線の形状が 変化する為、波形の<mark>位相のずれ</mark>を測定できる。

X は CH2信号、 Y は CH1信号 (50Hz)。

CH2 の周波数を 25Hz にすると、
X方向に 1往復する間に
Y方向に 2往復するリサージュ曲線が
描画される。(Xの周波数がYの半分)

CH2 の周波数を 100Hz にすると、
Y方向に 1往復する間に
X方向に 2往復するリサージュ曲線が
描画される。(Xの周波数がYの2倍)

http://chtgkato3.med.hokudai.ac.jp/kougi/ME_practice/

EXCEL でリサージュ曲線のシミュレーションを行う。 Excelを開いて、Aカラムのセル1に(A1に) tと入力. (Aカラム(列)に時間(秒)を入れる) ツールバーの中央揃えボタンを押すと、 文字がセルの中央に配置される. Aカラムのセル2, 3, 4に、(A2、A3、A4 に) 0、0.001、0.002を入力する. エクセル ワークシート の 縦の並びを、列 (カラム Column)という. |横の並びを、行(ロウ Row)という.

Oを入れたセル A2 にマウスポインタ を置いて、 左クリックしたまま 0.002 を入れた セルまでドラッグする.

3個のセルが選択された枠が出る.

枠の右下にマウスポインタを置くと カーソルの印が黒い十字に変わる.

黒い十字印にマウスポインタ置いて 左クリックしたまま セル22まで ドラッグして、左クリックを離す.

🗿 Book1						
	A					
1	t					
2	0					
3	0.001					
4	0.002					
5	0.003					
6	0.004	_				
7	0.005					
8	0.006	j.				
9	0.007					
10	0.008					
11	0.009					
12	0.01					
13	0.011					
14	0.012					
15	0.013					
16	0.014					
17	0.015					
18	0.016					
19	0.017					
20	0.018					
21	0.019					
22	0.02	-				
23		-				

セル A2 から A22 まで 0から0.02までの数字が 自動的に入力される. (これは、時間(秒)を示す数字) 桁が不揃いなので、ツールバーの 桁揃えボタンを押して、桁を揃える。 その際、セル2から22まで 選択枠が表示されている状態で あること(空色で表示)が必要です. Excel 2007 では、空色で表示した 選択枠内にカーソルを置いて右クリッ クすると桁揃えアイコンが出る。

%,	•.00 •.0						
A Book 1 Book 1							
	А	В					
1	t	5					
2	0.000	-					
3	0.001						
4	0.002						
5	0.003						
6	0.004						
7	0.005						
8	0.006						
9	0.007						
10	0.008						
11	0.009						
12	0.010	-					
13	0.011						
14	0.01.2						
15	0.013						
16	0.014	-					
17	0.015						
18	0.016						
19	0.017						
20	0.018						
21	0.019						
22	0.020	1					
00							

🖳 Book1

1

2

3

A

t

0.000

0.001

X

R

Х

C

Y

 \mathbf{Y}

カラムB、C の セル1に、X、Yを入力.

カラムBのセル1にマウスポインタを置いて 左クリックしたまま、カラムCのセル1まで ドラッグして、左クリックを離す。 カラムB、Cのセル1が選択された枠が出る。

ツールバーの中央揃えボタンを押して X、Yの文字をセルの中央に揃える.

R

Х

С

Y

🗸 fx

1

2

3

Book1

A

t

0.000

0.001

等号の記述は、セルの中に関数、数式を 入力する準備ができたことを示す.

関数入力枠の = の右側に関数を書く. sin(2*3.14*50* と入力する. (* は、エクセル、VBA で掛算を表す)

次にカラムAのセル2を左クリックする. 関数入力枠に A2 が自動入力される.

再び、関数入力枠の A2 の右側を 左クリックして、閉じカッコ)を入力.

最後に、キーボード上の Enter キーを押して、関数入力の終了.

キーボード上の Enter キーを押すと、 関数入力枠の記述が消えるが、 (これは セル B3 の内容を示しているため)

数字 O が表示されているセル B2 を 左クリックすると、(セル B2 を選択すると) 関数表示枠にセルB2に記述した式が現れる.

 f*
 =SIN(2*3.14*50*A2)

 Book1
 B

 A
 B

 1
 t
 X

 2
 0.000
 0

 3
 0.001

セル B2 が選択された状態で、 (セル B2 に枠が表示された状態で) 枠の右下にマウスポインタを置くと ポインタの印が、黒い十字に変化する.

📳 Bo	ok1			, <mark>.00</mark> .00 €
	A	В	В	白表于
1	t	Х	X	A strend and
2	0.000	0	0	
3	0.001		0.30887	
4	0.002		0.58753	
5	0.003		0.80874	0.309
6	0.004		0.95086	0.588
7	0.005		1	0.809
8	0.006		0.95135	0.951
9	0.007		0.80967	1.000
10	0.008		0.58882	0.951
11	0.009		0.31038	0.810
12	0.010		0.00159	0.589
13	0.011		-0.3074	0.002
14	0.012		-0.5862	-0.307
15	0.013		-0.8078	-0.586
16	0.014		-0.9504	-0.808
17	0.015		-1	-0.950
18	0.016		-0.9518	-1.000
19	0.017		-0.8106	-0.952
20	0.018		-0.5901	-0.811
21	0.019		-0.3119	-0.390
22	0.020		-0.0032	-0.003
10101		3		

セルB2枠の右下の黒い十字印 を左クリックしたまま、 セル B22 までドラッグして、 左クリックを離すと、 セル B2 から B22 まで数字が 自動的に記述される. 桁が不揃いなので、 ツールバーの桁揃えボタンで 桁を揃える.

セル B3 を左クリックすると 関数表示枠は以下の式が入っている. = SIN(2*3.14*50*A3)

セル B4 を左クリックすると 関数表示枠は以下の式が入っている. = SIN(2*3.14*50*A4)

カラムBの セル B3 ~ B22 の 式の中の カラムA の値が、 対応する行の値 A3 ~ A22 に 自動的に書き換えられていることを 確認して下さい.

カラムBの数字をグラフに表示して確かめる.

カラムAの、Aと表示したセルを左クリックする. カラムA全体に、選択枠が表示される.

次に、キーボード上のコントロールキー(Ctrl) (キーボードの左下または右下にある)を 押したまま、 カラムBの、Bと表示したセルを左クリックする.

カラムB全体にも、選択枠が表示される.

これで、カラムAとカラムB が選択された 状態になる (空色で表示される).

ツールバーのグラフウィザードボタンを押す. グラフィウィザードのダイアログが現れる. 散布図、曲線表示を左クリックして選択し、 次へ ボタンを左クリックする.

Excel 2007 では、挿入タグを開くと 散布図のアイコンがでる。

先楼

.....

SmartArt

データ

折れ線

縦棒

校閲

円

表示

横棒

グラフ

Acrobat

面

散布図

ページ レイアウト

図形

- 7

テーブル

ホーム

テーブル

挿入

20

R

クリップ

63

1

ピボット テーブル

グラフィウィザードのダイアログの完了ボタンを左クリックする. エクセルシート上に、横軸が t (カラムA)、縦軸が X (カラムB)の グラフが表示される.

X = sin (2 πf t)、f = 50 (Hz)、t が 0 から 0.02 秒までの グラフ.

1周期が 1/f=1/50=0.02 秒 になっていることを理解して下さい.

Im:交流電流の最大値。

ω(オメガ):角速度。

交流を円運動の射影と考えた場合の 1秒間に回転する角度。

50Hzの交流では、1秒に50回転する 円運動の射影と考えて、 ω = 2π x 50 (rad/s) (rad: ラジアン。360度 = 2π rad)

f(frequency): 周波数。1秒間の波の数。

東日本の交流周波数は f= 50 Hz (ヘルツ、Hertz)。 交流を円運動の射影と考えると、fは1秒間の回転数。 角速度 ω (1秒間の回転角度)との関係は、 $\omega = 2 \pi f$

ω

2π

T:周期(サイクル)。波1個が通過する時間。 交流を円運動の射影と考えると、Tは1回転する時間。 50Hzの交流では、1秒に50個の波が通過するので、 波1個の通過時間はT=1/50 秒。 周波数fとの関係は、f=1/T T=1/f

ω、T、f の関係式

$$\omega = 2\pi f = \frac{2\pi}{T}$$

周波数 f (Hz) (Hz = 1/sec)、角速度 ω (rad/sec)、 周期 T (sec)の関係は 一見ややこしいが、 各々の単位をよく見て、整頓して理解すれば簡単です。

交流波形1個を、円運動の1回転の射影にして考える。 1秒間にf個の波があれば、1秒間にf回転の円運動。 1回転の角度は360度(2πrad(ラジアン))なので 1秒間の回転角度ω(rad/sec) = 2π(rad) x f(1/sec)

周波数 f (1/sec)の意味は、1秒間に存在する波の数。 周期 T (sec)の意味は、波が 1個通る秒数。

1秒間に存在する波の数 f x 波が 1個通る秒数 T = 1

とりあえず、グラフを消去する. (グラフ枠内の空白を左クリックして キーボードのDeleteキーを押す) カラムC にも 周波数 50Hz の正弦波

カラムC にも 周波数 50Hz の正弦波を 入力する. セルC2 を左クリックして選択し、 関数入力枠に =sin(2*3.14*50* を入力. セルA2 を 左クリックして 関数にA2 を 自動入力.

関数入力枠に、閉じカッコ)を入力して キーボードの Enter キーを押す.

and the second se	
1.1	
10 M M	A second s
-	

	A	В	С	
11	t	Х	Y	
2	0.000	0.000	0.000	
3	0.001	0.309	0.309	
4	0.002	0.588	0.588	
5	0.003	0.809	0.809	
6	0.004	0.951	0.951	
7	0.005	1.000	1.000	
8	0.006	0.951	0.951	
9	0.007	0.810	0.810	
10	0.008	0.589	0.589	
11	0.009	0.310	0.310	
12	0.010	0.002	0.002	
13	0.011	-0.307	-0.307	
14	0.012	-0.586	-0.586	
15	0.013	-0.808	-0.808	
16	0.014	-0.950	-0.950	
17	0.015	-1.000	-1.000	
18	0.016	-0.952	-0.952	
19	0.017	-0.811	-0.811	
20	0.018	-0.590	-0.590	
21	0.019	-0.312	-0.312	
22	0.020	-0.003	-0.003 ┥	

セルC2 を左クリックして選択枠を出し、 選択枠の右下にマウスポインタを置いて ポインタ記号を黒い十字印にした状態で 左クリックを押しながら、セルC22 まで ドラッグして、左クリックボタンを離す.

セル C2 から C22 に正弦波の数字が 自動入力される.

セル C2 から C22 まで選択した状態で ツールバーの桁揃えボタンを押して

カラムC の数字の桁を揃える.

		f ∗=S:	[N(2*3.1+	4*50*A	2)			
Book1								
1	A		в	0				
1	t		X	Y				
2	0.0	00 🔽	0.000 1	0.00	0			
	- X .	/ fx =SI	[N(2*3.14	*50* <mark>A</mark> 2	2þ			
🔊 B	ook1	2	IN(設値)	1				
	A		В	С				
1	t		X	Y				
2	0.0	100 ×50	<u>×50*A2)</u> 0.00					
Ŧ	X √ fx	=SIN(2*3.	14*50* <mark>A2</mark> +	90*3.14/1	800			
🖲 Boo	k1	SIN(數值)	9					
	A	В	С	D				
1 E	t	Х	Y					
2	0.000	.14/180)	0.000					
▼ X √ f =SIN(2*3.14*50*A2+90*3.14/180)								
Book1								
	A	В	С	D				
1 1	- 64 K - 13							
and the second second	t	<u>X</u>	Y					

カラムBの関数Xを編集する. (正弦波の位相を90°進める)) セルB2を左クリックして選択. <u> 関数入力枠の A2 と)の間を</u> 左クリックして縦線カーソルを出す. A2の右に、+90*3.14/180と入力. 閉じカッコ)の右側をクリックして Enterキーを押して編集完了. sin関数の変数は、ラジアン単位 の角度を入れる必要があるので <u>90に m/180 を掛ける.</u> (1 度 (1[°]) = $\pi/180$ ラジアン)

Book1							
	A	В	С				
1	t	х	Y				
2	0.000	1.000	0.000				
З	0.001	0.870	0.309				
Book1							
	A	В	С				
1	t	X	Y				
2	0.000	1.000	0.000				
3	0.001	0.870	0.309				
4	0.002	0.980	0.588				
5	0.003	0.994	0.809				
6	0.004	0.911	0.951				
7	0.005	0.739	1.000				
8	0.006	0.494	0.951				
9	0.007	0.202	0.810				
10	0.008	-0.111	0.589				
11	0.009	-0.412	0.310				
12	0.010	-0.674	0.002				
13	0.011	-0.869	-0.307				
14	0.012	-0.979	-0.586				
15	0.013	-0.994	-0.808				
16	0.014	-0.911	-0.950				
17	0.015	-0.740	-1.000				
18	0.016	-0.496	-0.952				
19	0.017	-0.203	-0.811				
20	0.018	0.109	-05-0				
21	0.019	0.411	.312				
22	0.020	0.672	-0.003				

セルB2を左クリックして選択枠を出し、 枠の右下にマウスポインタを置いて ポインタの印を黒い十字に変化させる.

黒い十字印を左クリックしたまま セル B22 までドラッグして、 左クリックを離す.

🕮 Book1								
1	A	В	С					
1	t	Х	Y					
2	0.000	1.000	0.000					
3	0.001	0.951	0.309					
4	0.002	0.810	0.588					
5	0.003	0.589	0.809					
6	0.004	0.310	0.951					
7	0.005	0.002	1.000					
8	0.006	-0.307	0.951					
9	0.007	-0.586	0.810					
10	0.008	-0.808	0.589					
11	0.009	-0.950	0.310					
12	0.010	-1.000	0.002					
13	0.011	-0.952	-0.307					
14	0.012	-0.811	-0.586					
15	0.013	-0.590	-0.808					
16	0.014	-0.312	-0.950					
17	0.015	-0.003	-1.000					
18	0.016	0.306	-0.952					
19	0.017	0.585	-0.811					
20	0.018	0.807	-0.590					
21	0.019	0.950	-0.312					
22	0.020	1.000	-0.003					
		-						

カラムBの数字が、自動的に 正弦波の位相を 90°進めた数字 (余弦波 cos)に書き換えられる.

0.951

0.309

3

0.001

カラムB、C の数字をグラフで確かめる.

カラムAの、Aと表示したセルを左クリックする. カラムA全体に、選択枠が表示される.

次に、キーボード上のコントロールキー(Ctrl) (キーボードの左下または右下にある)を 押したまま、

カラムBの、Bと表示したセルと、

カラムCの、Cと表示したセルを左クリックする. カラムBとC全体にも、選択枠が表示される.

これで、カラムAとカラムBとカラム C が 選択された状態(空色で表示)になる.

🛎 Book1									
	A	В	С						
1	t	X	Y						
2	0.000	1.000	0.000						
3	0.001	0.951	0.309						

カラムAとカラムBとカラム C が 選択された状態で、 ツールバー の グラフウィザードボタン を 左クリックする.

?× ガラフ ウィザード - 1/4 - ガラフの種類 標準 ユーザー設定 グラフの種類(C): 形式(D): 1 縦棒 横棒 -🛃 折れ線 () 円 ☆ 散布図 面 🙆 ドーナツ レーダー 逾 等高線 : バブル データポイントを平滑線でつないだ散布図 です。 サンブルを表示する 2 次へ(N) キャンセル 完了(F)

グラフ ウィザード の ダイアログ が表れる.

散布図、曲線表示の項目を 左クリックして選択して 次へ ボタンを 左クリックする.

グラフィック ウィザード の 完了ボタンを 左クリックすると、

エクセル ワークシート 内に、

横軸が カラム A (時間 t : 0 ~ 0.02 秒)、

縦軸が カラム B(X: 周波数 50 Hzの余弦波)と、

カラム C (Y : 周波数 50 Hz の 正弦波)が 描画される.

横軸に X、縦軸に Y のグラフ を描く. (リサージュ曲線 Lissajous' Curve)

カラムB の Bと記述されたセルを 左クリックして、カラムB 全体を選択. (空色に表示される.)

次に、Ctrl キー を 押しながら、 カラム C の Cと記述されたセルを 左クリックして、カラムC 全体も選択.

グラフィック ウィザード ボタンを 左クリックする.

グラフ ウィザード の ダイアログ が表れる.

散布図、曲線表示の項目を 左クリックして選択して 次へ ボタンを 左クリックする.

グラフィック ウィザード の 完了ボタン を左クリックすると、 エクセル ワークシート 内に、 横軸が カラム B (X: 周波数 50 Hzの余弦波)、 縦軸が カラム C (Y: 周波数 50 Hzの正弦波)の リサージュ曲線が描画される.

🖲 Book1

	A	В	C	D	E	F	G	Н
1	t	Х	Υ	I				
2	0.000	1.000	0.000			I		
3	0.001	0.951	0.309		1.500			
4	0.002	0.810	0.588		1 000			
5	0.003	0.589	0.809	1	1.000			
6	0.004	0.310	0.951				er -	
7	0.005	0.002	1.000	13	4 0.500			
8	0.006	-0.307	0.951	-				
9	0.007	-0.586	0.810	1 500 1			000 1 500	- - Y
10	0.008	-0.808	0.589	-1.500 -1	.000 -0.500 0.0	1 0.500 0		
11	0.009	-0.950	0.310	12	0.500		0	
12	0.010	-1.000	0.002					
13	0.011	-0.952	-0.307		1.000			
14	0.012	-0.811	-0.586		1 500			
15	0.013	-0.590	-0.808		-1.500	_		
16	0.014	-0.312	-0.950					
17	0.015	-0.003	-1.000	1500				
18	0.016	0.306	-0.952	Lana				
19	0.017	0.585	-0.811			2		
20	0.018	0.807	-0.590		* 1	*		
21	0.019	0.950	-0.312		6100 2000	dais	anon 0.025	Ŷ
22	0.020	1.000	-0.003	-0500	1000 Parent			
23				-1.000		Conge		
24				-1 500				
25				1233				

横軸 X が 余弦波 X = cos(2 π ft) = sin(2 π ft + 90°)

|縦軸 Y が 正弦波 Y=sin (2πft)

のリサージュ曲線は、円になる.

 $\{\cos(2\pi ft)\}^2 + \{\sin(2\pi ft)\}^2 = 1 なので、$ X² + Y² = 1 = 1²

点(X、Y)は、原点(0、0)から常に距離1の位置に 存在するので、半径1の円を描く.

横軸 と 縦軸 の 正弦波 の 振幅 と 周波数 が 等しい場合は、 位相が 90° ずれると、リサージュ曲線は、円になる.

名前を付けて保存(A)...

上書き保存(S)

印刷範囲(T)

EXCEL ウィンドウ の 左上にある ファイル メニュー を左クリックする. メニューの 名前を付けて保存 を選択. ファイルの種類は、Microsoft Excel ブック(*. xls)を選択して、 適当な名前を付けて保存して下さい. 編集後は適宜、上書き保存して下さい.

作成したワークシートを保存する。

カラムB の関数 X を編集する. (正弦波の位相を 45[°]進める.) セルB2 を左クリックして選択. 関数入力枠を 左クリックして 縦線カーソルを出し、編集する.

A2 の右を、+45*3.14/180 と変更. 閉じカッコ) の右側をクリックして Enterキーを押して編集完了. セルB2 から B22 まで 黒十字を ドラッグ.

円を示していた リサージュ曲線が 変化することを確認して下さい. カラムBの正弦波 Xの位相角 (Ф)を45°刻みで変化させて リサージュ曲線が変化する様子を観察して下さい. リサージュ曲線の形状で2つの交流信号の位相ずれが測定できる ことを理解して下さい.

位相角 (**Φ**)が 180°を越えると、 リサージュ曲線が もとの形状に戻っていく様子を観察してください.

🗲 =SIN(2*3.14*100*A2)

💐 Lissajous.xls

カラムB の関数 X を編集する. (正弦波の位相差を 0°にして 周波数を 100 Hz にする.)

セルB2 を左クリックして選択. 関数入力枠を 左クリックして 縦線カーソルを出し、編<u>集する.</u>

SIN (2*3.14*100*A2)と変更.

セルB2 から B22 まで 黒十字を ドラッグ.

リサージュ曲線が 変化することを確認して下さい. カラムB の 正弦波 X の 周波数 f を 50 Hz 刻みで 変化させて リサージュ曲線が 変化する様子を観察して下さい. リサージュ曲線の形状で 2つの交流信号の 周波数比 が 測定できる.

縦軸の交流 Y の 周波数 50 Hz に対する 横軸の交流 X の 周波数 の 倍率は 2、3、4 倍.

縦方向に 点 (X、Y) が 1 往復する間に、 横方向に 往復する回数が 2、3、4 倍に 増加していることを 理解して下さい.

-0-500

-1.000

-1.500

▶ =SIN(2*3.14*150*A2+90*3.14/180) 💐 Lissajous.xls A R С χ γ 2 0.000 1.000 0.000 横軸の交流 X の周波数が f = 150 Hz の リサージュ曲線は 位相差が 0°の場合では、 X 方向に 3往復していることが わかりにくいので、 Xに、位相差を90°加えると 理解しやすい.

- カラムB の関数 X を編集する.
- (正弦波の周波数を 50Hz、位相差を 90°にして、振幅を 2 にする.)
- セルB2の式を = 2*SIN(2*3.14*50*A2 + 90*3.14/180)と変更. セルB2 から B22 まで 黒十字をドラッグ.
- リサージュ曲線が変化することを確認して下さい.

EXCEL の グラフ ウィザードは、自動的にデータ表示範囲を データ幅で揃えてしまうので、一見、交流 X の振幅を変えても リサージュ曲線が変化しないような印象を与えるが、X、Y軸の目盛り の値に注目し、楕円 に変化していることを理解して下さい.

振幅比(信号電圧比)= A/B

VBA (Visual BASIC for Application) を使って、リサージュ曲線を回転させる。

VBA

Microsoft Office (Excel や Word などのソフトウェア) に組み込まれた BASIC 言語によるプログラム、マクロ作成ツール。

使えるようになると非常に便利。

リサージュ曲線を回転させるマクロを含む エクセルワークシートを作成する。

🖳 Lissajous.xls

	А	В	С	D	E	F		G	Н	Ι	J	
1	t	Х	Y		X amplitude	1			4.500			<u> </u>
2	0.000	0.342	0.000		X frequency	50		-+	-Y	Y		
3	0.001	0.615	0.588						1.000			
4	0.002	0.829	0.951		Y amplitude	1						
5	0.003	0.961	0.951		Yfrequency	100			1 0,000			
6	0.004	0.999	0.589					-		+ +		
7	0.005	0.940	0.002					-2.000	-1.000 0	000 1,000	2.000	
8	0.006	0.789	-0.586							₿. / -		
9	0.007	0.560	-0.950	_	licrosoft Excel				-1.000	**		
10	0.008	0.277	-0.952		X phase = 20				-1.500			
11	0.009	-0.033	-0.590				┝╴					
12	0.010	-0.340	-0.003		OK I			1.500			z	
13	0.011	-0.614	0.585					um 🗕 🎤	++.		T	H
14	0.012	-0.828	0.950							▰	•	-
15	0.013	-0.961	0.952							<u> </u>		-
16	0.014	-0.999	0.591					0.000		ε ασιά Σ	🗯 ghao 🔹	
17	0.015	-0.941	0.005				Ц.	.1.000	<u> </u>		<u> </u>	
18	0.016	-0.790	-0.584				Ц.					
19	0.017	-0.562	-0.949									
20	0.018	-0.279	-0.953									
21	0.019	0.032	-0.593									
22	0.020	0.339	-0.006									

マクロ【macro】

ワープロソフトや表計算ソフトなどで、特定の操作手順 をプログラムとして記述して自動化する機能。

プログラムの記述に使う言語をマクロ言語という。

よく使う処理をマクロとして保存しておけば、 必要なときに簡単に実行できるようになる。

マクロ機能を持ったアプリケーションソフトは、マクロの開発環境や動作環境が用意されている。

できたプログラムは文書ファイルに他のデータと 一緒に保存される。

次週の講義では Excel がインストールされた ノートパソコンを持っている人は 持参して下さい。

VBAを解説した 書籍やホームページ は多数ある。

臨床検査技師は

数字データを多く扱う

職業なので、

VBAが使えると

非常に仕事が楽になる 場合が多い。