

1998年	2006年	2008 年	2013 年	2016 年	現在
PET装置・サイク ロトロン導入	未来創業・医療イノペー ション拠点形成事業開始	PET/CT装置導入	PET装置更新、 PET/CT装置追加導入		
"EXACT HR+" (Siemens)		+	"Gemini TF" (Philips)		•••••
"EXACT 47" (Siemens)		+	"Gemini GXL" (Philips)		•••••
	研究用半導体PET (北大,日立)				
		"Biograph64" (Siemens)			+
					"Vereos (Philips)
				HO	KKAID

半導体とは					15
半導体の種類	半導体検出器に用いられる	半導体の性	生質		
 単元素半導体 ✓ Si. Geなど 	@25°C	Si	Ge	CdTe	CZT
2. 化合物半導体	原子番号	14	32	48, 52	48, 30, 52
✓ Colle, Colle (C21), 2nS, GaAs 3. その他	密度 (g/cm3)	2.33	5.33	6.2	6.0
✓ カーボンナノチューブ ✓ 導雷性ポリマー(高分子半導体)	バンドギャップエネルギー (eV)	1.12	0.67	1.44	1.5-2.2
定義:	キャリア対生成エネルギー (eV)	3.62	2.96	4.43	5.0
何らかの手段を用いることで電子の流れを 自由に制御できること	比抵抗 (Ωcm)	104	50	10º	1011
日田に前時でとうこと	電子移動度 (cm²/Vs)	1400	3900	1100	1350
半導体の主な用途	正孔移動度 (cm ² /Vs)	480	1900	100	120
✓ トランジスタ、集積回路 ✓ 発光ダイオード、フォトダイオード(受光素子)	電子寿命 (sec)	10-3	10-3	3×10-6	10-5
✓ 太陽電池 など	正孔寿命 (sec)	2 × 10-3	10 ⁻³	2×10-6	5×10-8
Schlesinger, James. Semiconductors for room temperature nuclea	r detector applications. Vol43:p471	D.		HOK	KAIDO e r s i t y

半導体の用途 ~Silicon Photomultiplier (SiPM)~ Analog-SiPM GE Siemens PET装置への実装 "Discovery MI" "Biograph Vision ✓ 複数のシンチレータを1つのanalog-SiPMでカバー (両メーカ共に4×4=16個のクリスタルに1個の _ クリスタル Analog-SiPM?) →PMTと同じ →アンガーロジック(重心計算)が必要 →重心が偏る(信号に偏心がある) ✓ アナログ信号に起因するノイズがある →ヒートノイズ、電気的なノイズ Analog-SiPM ightburst Digital Detector. GE Healthcare white paper. ANM'18. 機器展示. Siemens booth. HOKKAIDO 21

		Philips "Vereos"	Philips "Gemini TF"	Siemens "Biograph Vision"	GE "Discovery MI"
光検出器		Digital-SiPM	PMT	Analog-SiPM	Analog-SiPM
Axia	FOV (cm)	16.4	18.0	26.1	15 (3 ring) / 20 (4 ring)
Transve	rse FOV (cm)	67.7	67.6	70	70
クリスタルサイズ (mm³)		4.0 × 4.0 × 19	4.0 × 4.0 × 22	3.2 × 3.2 × 20	3.95 × 5.3 × 25
TOF時間分解能 (psec)		310	495	214	375.4
空間分解能*1	Transverse @1 cm	4.2	4.8	3.5	4.2
(mm FWHM)	Axial @1 cm	4.2	4.8	3.5	4.5
感度 @center (cps/kBq)		5.1	6.6	16.4	7.5 / 13.7
Peak NECR (kcps) @activity (kBq/mL)		153 kcps @55 kBg/mL	125 cps @17 kBq/mL	306 cps @33 kBq/mL	100 kcps @21 kBq/mL 193 kcps @22 kBq/mL
赦乱フラクション (%)		33.9	27	38.7	40.6

Kol Var He

Time-of-flight Non-TOF TOF 650 psec (∠x = 9.7 cm) 500 psec (⊿x = 7.5 cm) 200 psec (∠lx = 3.0 cm) Ċ., ⊳ 1.0 2.0 2.3 3.7 SNR gain NEC gain (Sensitivity gain) 13.3 1.0 4.1 5.3 ※被写体直径を40 cmと過程 画像再構成法: FBF linical implementation of VUE Point FX[™]. GE Healthcare white paper.を改变 HOKKAIDO 32

半導	体素子を搭載したPET装置により	期待できること 39
- 일 - T - ở	空間分解能の向上 TOF時間分解能の向上(実効感度、実 数え落としの低減(計数率直線性の改 応用例 - 診断精度の向上 - 精度の良い放射線治療計画 - 繰り返し検査への対応 - (正確な治療効果判定)	効SNRの上昇) 善) これまでの知見(主に北大 で行われた研究)をもとに Vereosへの期待を考察
39		

精度の良い放	射線治療計画			45
Patient $\overline{\texttt{bis}}$ Average \pm SD 1: p value 1:	型半導体PET 《 従来型F 5.7 ± 9.9 mL 0.0006 34.0 ± 20	PET 高分解 <u>3.5 mL</u> 治療にな なった	能のPETを用いること ⁻ おける標的体積が有意	で、放射線 に小さく
Patient no. Average \pm SD <i>p</i> value	大級・小編線 直接型半導体PET 2.001 ± 347 0.0418	量 (cGy) 従来型PET 2.233 ± 209	総幹統員 直接型半導体PET <u>1.475 ± 612</u> 0.0041	L (cGy) 従来型PET <u>1.816 ± 455</u>
高分解能のPET 脳組織の線量を	を用いることで、標的 減らすことができた	外		
Katoh N, et al. Int J Radiation	Oncology Biol Phys. 2012;82:e67	1–6.	()	HOKKAIDO

繰り返し検査への対応 90 sec/bed - Vereos - ^{89 kg} - ¹⁰F-FDG (477 MBq) - ¹⁰F-FDG (477 MBq

 本日の内容
 51

 ・ 北大PET装置の発達
 ・ 次来型PET装置のおさらない

 ・ 火来型PET装置のおさらない
 ・ 1

 ・ 米市林 とその用道 1 1
 ・ 1

 ・ 北大での航界街堂とまとめ
 ・ 0

 ・ 北大での航界街堂とまとめ
 ・ 1

 ・ 北大での航界街台とまとめ
 ・ 1

空間分解能G =	$= 1.25\sqrt{(d/2)^2 + s^2 + (0.0044H)^2}$	$(x)^2 + b^2$	$+\frac{(12.5r)^2}{r^2+R^2}$	(mm FW	'HM)
Decoding error		空間分解的	能(NEMA)		Di-14-1 010
PMT搭載PETにおけるアンガーロジック を用いた位置演算	クリスタルとDigital-SiPM大きさが一致(1:1カップリング) →位置演算不要	(mm FWHM)		Philips	Philips Verene
			@ 1 cm	4.7	4.0
		Transaxial	@ 10 cm	5.2	4.5
		Avial	@ 1 cm	4.7	4.0
	※Philos "Vereos"のみの構造	Axial	@ 10 cm	5.2	4.5
				жi	而像再構成法: F
	※Philips "Versos"のみの構造		@ 10 cm	5.2 *i	4.5 画像再横成法

51

 Take home message
 ガンマ線を直接検出するタイプとシンチレータを介して間接的に検出す るタイブの半導体PET装置がある(ただし、商用化しているのは間接 型のみ)
 Silicon Photomultiplier (SiPM)には、信号をアナログ出力するタイプ とデジタル出力するタイプがある
 SiPM搭載PETIは、空間分解的向上、数え落としの低減、TOF効果 の上昇などが期待できる
 →提昇などが期待できる
 →提与量(被曝)を減らし、繰り返し検査ができる
 →撮影時間を減らし、編みの強い患者の負担を減らす(アーチファクト低減)
 →投与量、撮影時間はそのままに、より画質を上げる

67