放射化学基礎 Radiochemistry

29年度 前期 火曜 4講目 C304

6月 6日 講義8

6月 13日 休講(学会出張)

6月 20日 講義9

6月 27日 <u>講義10</u>

7月 4日 期末試験

炭素の同位体で正しいのはどれか。**2 つ選べ**。

- 1. ¹¹C は天然に存在する。
- 2. ¹³C は天然に存在する。
- 3. ¹¹C は安定同位元素である。
- 4. ¹³C は放射性同位元素である。
- 5. 14C は年代測定に利用される。
- 12C は安定同位体。存在比 98.9% 13C も安定同位体。存在比 1.1%

代表的な動物実験用のβ線核種は、 ³H, ¹⁴C, ³²P 液体シンチレータ、オートラジオグラフィに 用いる。

- 1.711MeV 14.3d æр Β-
- 0.168MeV 87.4d 35**ς** в-0.270 MeV44.6d 59Fe β-

放射化学基礎 10

19年国家試験

解答 1

生物学的半減期と物理的半減期 とが等しいときに有効半減期が 最も短いのはどれか。

- 1. ¹⁸F 4. ¹³¹I
- 2. 67 Ga 5. 201 T1
- 3. 99mTc

物理的半減期 Tp physical half life 生物的半減期 Tb biological half life 生物が摂取したRIの半分が代謝され排泄される時間 有効(実効)半減期 Teff effective half life 生物が摂取したRIの放射性が半減する時間 $1/T_{eff} = 1/T_p + 1/T_b$ $T_p = T_b$ table to the table to table to

半減期 ¹⁸F 110分 ⁶⁷Ga 78時間 ^{99m}Tc 6時間 ¹³¹I 8日 ²⁰¹TI 73時間

サイクロトロンを利用して製造される 核種はどれか。**2つ選べ**。

1. ⁹⁰Sr

4. 137Cs

2. ⁹⁹Mo

5. ²⁰¹T1

3. 1111In

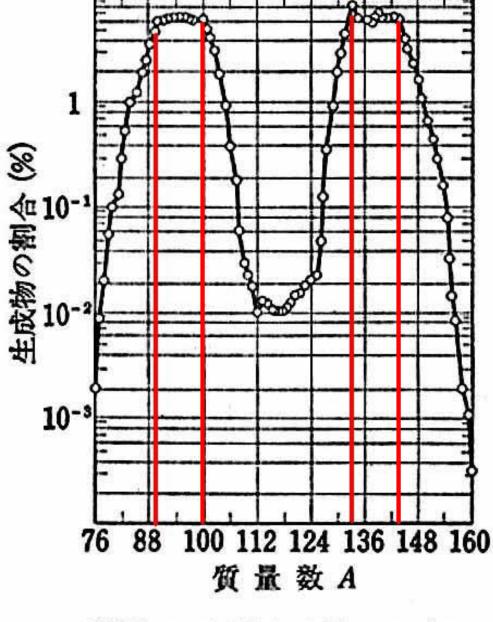
放射性同位元素の生成法

1. 中性子等による放射化 放射化分析

非放射性の試料に、原子炉内中性子や荷電 粒子(p、d)やガンマ線を照射してRIを生成。

2. ジェネレータ生成

放射平衡でRIを生成。99mTc, 81mKr, 82Rb など。


3. 原子炉生成 235Uの 核反応

原子炉内で²³⁵U に熱中性子(エネルギーの小さい中性子)をあてると、²³⁵U の 核分裂反応によって、質量数が90~100 と 130~140 のRIが生成。

19年国家試験 解答 5 (1,4も正解)

原子炉生成核種はどれか。

- 1. ³H 4. ³²P
- 2. 11°C 5. 137°Cs
- 3. 18F

²³⁵U の分裂生成物の分布

原子炉内で 235U 仁熱中性子 (エネルギーの小さい 中性子)をあてると、 質量数が 90~100 **\(\)** 130~140 O 元素に核分裂しやすく、 約200MeVの

エネルギーを放出する。

原子炉で生成されるRIは、

235Uの核分裂で生成されるRIと、

原子炉内で、 235 U の核分裂で生じる中性子の照射によって (n,γ) 反応や (n,α) 反応で放射化される RI。

```
^{3}Li (n, \alpha ) ^{3}H

^{31}P (n, \gamma ) ^{32}P

^{50}Cr (n, \gamma ) ^{51}Cr

^{58}Fe (n, \gamma ) ^{59}Fe

^{59}Co (n, \gamma ) ^{60}Co
```

 $p \rightarrow n + e^+$

壊変形式が同一の核種の組合せはどれか。

- 1. ³H ¹¹C
- 2. ^{13}N ^{15}O
- 3. ${}^{18}F$ ${}^{24}Na$
- 4. ³²P ⁸²Rb
- 5. ⁶⁸Ga ⁴⁰K

サイクロトロン生成核種 陽電子放出核種

pまたはdを照射して生成

¹⁵O, ¹³N, ¹¹C, ¹⁸F

- ¹⁴N(d,n) ¹⁵O, ¹⁵N(p,n) ¹⁵O 150 2 min
- $^{12}C(d,n)$ ^{13}N , $^{16}O(p,\alpha)$ ^{13}N 13N 10 min
- 11C 20 min $^{14}N(p, \alpha)$ ^{11}C
- ¹⁸O(p,n) ¹⁸F ¹⁸F 110 min

物理的半減期の最も短いのはどれか。

- 1. 11 C 4. 18 F
- 2. ¹³N 5. ⁶⁸Ga
- 3. 15 O

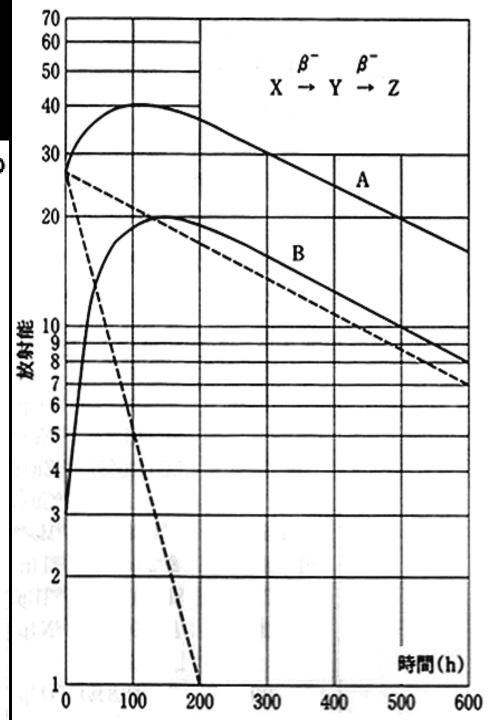
放射性核種の分離法で正しいのはどれか。

- 1. 溶媒抽出法では担体を利用する。
- 2. 共沈法では分配比の違いを利用する。
- 3. イオン交換法では分布係数の違いを利用する。
- 4. ペーパークロマトグラフィでは反跳効果を利用する
- 5. Szilard-Chalmers〈ジラード・チャルマー〉法では Rf 値の違いを利用する。

放射平衡のジェネレータ装置で生成するRI

親核 崩壊/半減期 娘核 崩壊/半減期

$$^{82}Sr$$
 $\beta^{+}/25d$ ^{82}Rb $\beta^{+}/75S$


親核種と娘核種の組合せで過渡平衡 が成立するのはどれか。**2つ選べ**。

- 1. ⁸¹Rb 81mKr
 - 2. ⁹⁰Sr ⁹⁰Y
- 3. ⁹⁹Mo ^{99m}Tc
- 4. ¹³⁷Cs ^{137m}Ba
- 5. 226 Ra 222 Rn

19年国家試験 解答 5

親核種X、娘核種Yおよび孫核種Zの間の 放射平衡を示す図で正しいのはどれか。

- a. XとYとは永続平衡の状態にある。
- b. 親核種の半減期は約40時間である。
- c. 娘核種の半減期は約350時間である。
- d. 曲線 A は全体の放射能の推移を示す。
- e. 曲線 B は生成する娘核種の生成と 減衰を示す。
- 1. a.b 2. a.e 3. b.c
- 4. c.d 5. d.e

放射平衡 Radiative Equilibrium

N1 = N0
$$e^{-\lambda 1 t}$$

d N1/dt = $-\lambda 1$ N1
d N2/dt = $\lambda 1$ N1 $-\lambda 2$ N2

 $d N2/dt + \lambda 2 N2 = \lambda 1 N0e^{-\lambda 1 t}$

過渡平衡 Transient Equilibrium

親核種の入1が娘核種の入2より小さい場合。 =親核種のT1が娘核種のT2より長い場合。

N2 =
$$\lambda$$
 1 N0 /(λ 2 - λ 1) ($e^{-\lambda 1 t} - e^{-\lambda 2 t}$)

$$=\lambda 1 N0 /(\lambda 2 - \lambda 1) (e^{-\lambda 1 t})$$

$$= \lambda 1/(\lambda 2 - \lambda 1)$$
 (N0 e^{- $\lambda 1 t$})

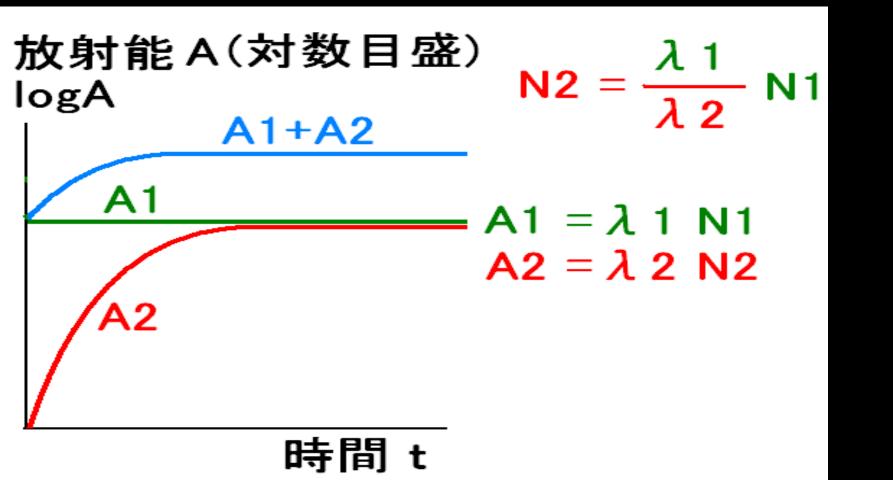
$$N2 = \lambda 1/(\lambda 2 - \lambda 1) N1$$

過渡平衡の例 99Mo - 99mTc - 99Tc

99Mo、99mTcの半減期は66時間、6時間。

全体の半減期は、親核種の半減期と同じ。

永続(永年)平衡 Secular Equilibrium


親核種の入1が娘核種の入2より極めて小さい場合。 =親核種のT1が娘核種のT2より極めて長い場合。

$$N2 = \lambda 1/(\lambda 2 - \lambda 1) N1 \quad (\lambda 1 \ll \lambda 2)$$

$$N2 \Rightarrow (\lambda 1 / \lambda 2) N1$$

永続平衡の例 ²²⁶Ra - ²²²Rn - ²¹⁸Po

²²⁶Ra (ラジウム) の半減期は 1600年。 ²²²Rn (ラドン) の半減期は 3.8日。

正しいのはどれか。2つ選べ。

- 1. 共沈法は溶解度積の法則を用いる。
- 2. 無担体の放射性同位体は比放射能が高い。
- 3. イオン交換法の除イオン交換基にカルボン酸基がある。
- 4. スカベンジャは目的とする放射性同位体を沈殿させる。
- 5. 電気泳動法は電解質溶液中のイオンに磁場をかけて分離する。

溶媒抽出法 solvent extraction

[分配の法則]

混じり合わない2種類の液体、液層に1つの溶質が溶ける場合、各液層中での溶質濃度C1、C2の比率は、溶質の分量に関係なく一定であり、

その比を、分配係数 K という。 K = C1/C2

照射後のターゲット試料を塩酸などで水溶液化し、

溶媒抽出法では、主に有機溶媒を加える。

照射試料液体中に複数の RI が存在する場合、

- 1. 分離したい RI を沈殿抽出するための担体を 捕集剤(共沈剤、collector)という。
- 2. 分離したい RIを試料液体中に保持するための担体を保持担体(hold back carrier)という。
- 3. 除きたい RI を沈殿抽出するための担体を スカベンジャー(scavenger) という。

scavenger【名】

- 1 腐肉を食べる動物,清掃動物
- 2 市街清掃員, ごみ集め人(cleaner, sweeper).
- 3 [化]不純物除去剤.

無担体分離 carrier free

RIを分離する作業で、担体(抽出したい RIと化学的挙動が同じもの。安定同位体 など)を加えて RI を分離抽出する場合、 抽出された RI の 比放射能(RI 1g あたり の Bq 数、比放射能 - 放射能/重量) は、大きいほど良好な抽出である。

同位体担体を加えずに高い比放射能で 目的とする RI を抽出する作業を、 無担体分離という。 ジラード・チャルマー(ズ)法 Szilard – Chalmers' method

(n、 r) 反応の他にも、サイクロトロンでの (d,p)反応、γ線照射での(γ,n)反応 も、ターゲット試料と原子番号が同じRIが 生成されるが、同時に RI から 発生する ガンマ線、陽子線、中性子線で反跳原子 (ホットアトム)となった RI が、ターゲット分 子内の化学的結合から切れて、無担体の 大きい比放射能の RI が抽出される方法。

3. イオン交換法 ion exchange process

イオン交換樹脂を用いて RIを分離精製する方法。

イオン交換樹脂に分離したい溶質を含む溶液を

接触させ、樹脂中と溶液中の同符号のイオンが

交換され平衡状態に至る現象をイオン交換という。

この方法の利点は、大量のRI抽出が可能なこと。

欠点は、長時間を必要とすること。

クロマトグラフィで正しいのはどれか。

- 1. ペーパークロマトグラフィはカラムを用いる。
- 2. イオン交換クロマトグラフィはカラムを用いる。
- 3. ガスクロマトグラフィは固定相にガスを用いる。
- 4. 薄層クロマトグラフィは移動相にガスを用いる。
- 5. イオン交換クロマトグラフィは昇華性を利用する

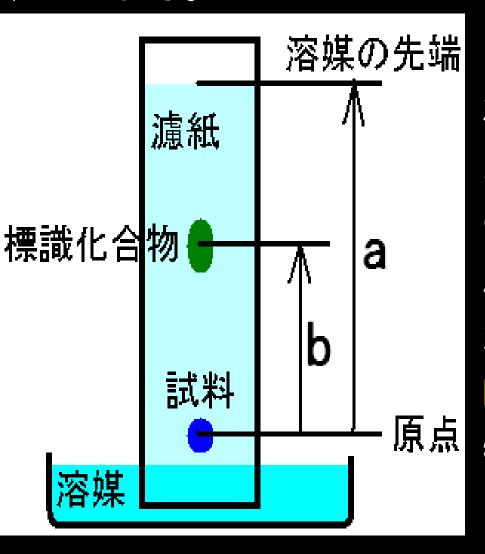
4. クロマトグラフィ chromatography

物質を分離・精製する技法。

物質の大きさ・吸着力・電荷・質量・疎水性などの

違いを利用して、物質を成分ごとに分離する。

クロマトグラフィは、固定相または担体と


呼ばれる物質の表面あるいは内部を、

移動相と呼ばれる物質が通過する過程で

物質が分離されていく。

ペーパー(濾紙)クロマトグラフィ

固定相は固体(濾紙)、移動相は液体(溶媒、展開剤)が 用いられる。

Rf (Rate of flow) 移動率

濾紙に試料溶液を付けた原 点から、溶媒の浸透先端まで

の距離a

原点の試料から標識化合物 が移動した距離 b

Rf = b/a

物質により決まった値 (一定の濾紙、展開剤にて) イオン交換クロマトグラフィ ion-exchange chromatography IEC

固定相は直径1µm以下の微細球状の イオン交換樹脂をカラムに詰め込んだもの。

移動相は、いろいろなpH、塩濃度の溶離剤が 用いられる。

溶離剤のpHなどに応じて試料中のイオンが 中性化してカラム内のイオン交換樹脂から離れ、 分離される。

- ラジオコロイドで正しいのはどれか。
 - 器壁に吸着しない。
 - 2. ろ過で分離できない。
 - 3. 遠心分離で分離できない。
 - 4. イオン交換樹脂に吸着されない。
 - 5. 核種の濃度は生成に関係しない。

7. ラジオコロイド radiocolloid

通常の物質は溶解度より低い濃度ではコロイドを形成しないが、 微量 $(10^{-10}\sim10^{-18}\,\mathrm{g})$ のRI は、溶液中で安定なコロイド粒子 $(1\sim100\,\mu\,\mathrm{m}\,\phi)$ を形成する。これを ラジオコロイド という。

ラジオコロイドになりやすい元素

P. Y. Zr. Nb. Po. Bi. Th. Pu. Ba. La. Ce Ca. Ag

ラジオコロイドになった RI は、通常の 非放射性同位元素と物理化学的挙動が 異なることに要注意。

重力や遠心分離で容易に沈殿する。

コロイドになるとイオンとしての挙動は示さなくなる。

特に、コロイドは、容器壁面やイオン交換 樹脂に吸着しやすい性質を持つ。 吸着のしやすさは溶液のpHで変化する。

- クロラミンT法
- ペーパーディスク法
- 3. ラクトパーオキシダーゼ法
- 4. Wilzbach 〈ウイルツバッハ〉法
- 5. Bolton-Hunter〈ボルトン・ハンター〉法

標識化合物の合成法の種類

- 1. 化学(的)合成法 (¹⁴C、³H 標識化合物)
 ¹⁴C は グリニヤール反応
- 2. 生合成法 (天然有機化合物のRI標識)
- 3. 同位体交換法 (³H、放射性ヨウ素交換) ³H ガス接触法は ウイルツバッハ法
- 4. 反跳合成法 (ホットアトム法)
- 5. その他 (99mTc、放射性ヨウ素の標識)
 125I の直接的標識法は クロラミンT法、
 間接的標識法は ボルトンハンター法

関係ない組合せはどれか。

1. 分配係数 ————— 溶媒抽出法

2. 反跳効果 ――――― ジラード・チャルマー法

3. 1C 標識化合物の合成 ——— グルニヤール反応

4. 放射化学的純度の検定 ―――― 薄層クロマトグラフィ

5. 蛋白質の放射性ヨウ素の標識法 -ウイルツバッハ法

標識化合物の 放射化学的純度 (radiochemical purity)

> 目的の標識化合物の放射能 ----x 100(%)

> > 全体の放射能

高速液体クロマトグラフィ(HPLC)などで放射化学的純度が測定される。 基準を満たしていない院内製造の放射性薬剤(18F-FDG など)は検査に使用しない。 正しいのはどれか。2つ選べ。

- 1. 放射性降下物 Sr の分析は放射分析に分類される。
- 2. 同位体効果は原子番号が6より大きい元素で生じる。
- 3. 放射性炭素 1°C を測定することで年代推定が可能である。
- 4. α線を用いると高解像度のオートラジオグラムが得られる。
- 5. アクチパブルトレーサ法で用いるトレーサは非放射性元素である。

放射分析法 radiometric analysis

非放射性の試料に定量的に結合する放射性物質を加え、沈殿または上清の放射能を測定して、試料を定量分析する方法。

試料Aと沈殿を生成する放射性物質B*を、 試料Aに滴下し、沈殿AB*の放射能を測定。

- ① 直接法:沈殿物の放射能から試料中の目的物質の定量を行う
- ② 間接法:上澄の放射能から試料中の目的物質の定量を行う。

放射化分析法 radioactivation analysis

サイクロトロンで陽子p (proton)または 重水素原子核d (deuteron)を非放射性 元素(ターゲット核種)に照射し、放射性 元素を生成する。

その放射能のエネルギーや半減期などを調べ、核種の種類や重量を分析する方法。

放射化学分析法 radiochemical analysis

核実験等に伴う放射性降下物

(90Sr、131I、137Cs など) や、

自然界の物質(温泉水など)に含まれる

放射性核種の同定や定量を行う分析。

同位体効果 isotope effect

同位体元素は、陽子数は同じなので化学的性質は同じ。

しかし質量数が異なるので、物理的性質(拡散速度や沸点など)が異なること。

特に1Hと2H、1Hと3Hとの物理的性質の差は大きく、Hは同位体効果が大きい。

炭素より重い元素には、同位体効果はほとんどない。

14Cによる年代測定法 半減期 5730年

炭素の安定同位体は¹²C。¹⁴Cは成層圏で宇宙線に含まれる中性子と窒素¹⁴Nとの放射化反応で生じる。 ¹⁴N(n,p) ¹⁴C。

14C は炭素の1.2 x 10-10 % を占め、大気中の炭素の比放射能は一定値を維持している。

生きている動植物内の炭素比放射能も同じ値だが、 死亡した生物は¹⁴C の物理半減期(5730年)に従い、 時間経過とともに炭素比放射能が減少する。

この現象を利用して、土器等に付着した食物、木製の建築物や美術品の炭素の比放射能を測定して、それらが何年前に作成されたかを計算できる。

アクチバブルトレーサ法 activable tracer method

野外では非密封放射性トレーサを使用できない。

野外で植物や動物に、ユウロピウムEuなどの非放射性元素をトレーサとして摂取させる。

動植物を採取した後に原子炉内に入れ中性子でトレーサを放射化して目的物質を定量する方法。

ユウロピウムEuは自然界の存在量が少なく、 中性子で放射化しやすい(放射化断面積が大きい)。極微量のEuを特定の土壌に入れて植物を 栽培し、根や葉への土壌成分吸収量を定量する などの、野外調査が出来る。 イオン交換法で用いる陽イオン交換基はどれか。

- a. スルホン酸基
- b. カルボン酸基
- c. 第四級アンモニウム基
- d. 第一級アミン基
- e. イミノ基
 - 1. a, b 2. a, e 3. b, c
 - 4. c.d 5.d, e

よく使用される 酸性 陽イオン交換基

スルフォ基 −SO₃ (−SO₃ H)
(スルホン酸基)
カルボキシル基 −COO (−COOH)
(カルボン酸基)

よく使用される 塩基性 陰イオン交換基

第4級アンモニウム基 -(NR3) (強塩基性)アミノ基 -(NH2R) (弱塩基性)イミノ基 -(NHR2) (弱塩基性)